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Traditional graph based sentence ranking algorithms such as LexRa nk and HITS model the 
documents to be summarized as a text graph where nodes represent sentences and edges 
represent pairwise relations. Such modeling cannot capture complex group relationship 
shared among multiple sentences which can be useful for sentence ranking. In this paper, 
we propose to take advantage of hypergraph to remedy this defect. In a text hypergraph, 
nodes still represent sentences, yet hyperedges are allowed to connect more than two sen- 
tences. With a text hypergraph, we are thus able to integrate both group relation ship and 
pairwise relationship into a unified framework. Then, a hypergraph based semi-supe rvised 
sentence ranking algorithm is developed for query-oriented extr active summarizati on, 
where the influence of query is propagated to sentences through the structure of the con- 
structed text hypergraph. When eval uated on DUC datasets, performance of our proposed 
approach shows improvements compared to a number of baseline systems. 

� 2013 Elsevier Inc. All rights reserved. 
1. Introduction 

Today, with the rapid growth of the World Wide Web (WWW), it has become a burden for people to read a large amount 
of documents from diverse sources to get the informat ion they need. Automatic text summari zation provides an effective 
means to access the exponential ly increased collection of information . The main evaluation forums providing benchmarks 
for researchers working on automatic text summarization are the Document Understandi ng Conference (DUC) and Text 
Analysis Conferen ce (TAC). Over the past years, DUC and TAC evaluations have gradually evolved from single-document 
to multi-docum ent and from generic to query-oriented summari zation. Query-oriented multi-docum ent summarization 
aims to produce a short and concise summary for a collection of relevant documents describin g a given topic or event with 
respect to a query that expresses the information need of users. 

Although automatic text summarization has a long history that dates back to the 1960s, up to now extractive summari- 
zation that directly extracts sentences from documents to generate summaries is still the mainstream regardless of the nat- 
ure and the goals of the tasks. Under this framework, sentence ranking is the most important issue for sure. In recent years, 
graph based sentence ranking draws considerable attention of the summarizati on community due to its ability to take into 
account the relationshi p between sentences and calculate sentence significance recursively through the global, rather than 
local, link structure of the text graph that are constructed by connecting the associate d sentence s together. Relationship is 
normally measure d in terms of the cosine similarity between two sentences. Graph based sentence ranking is mainly 
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inspired by PageRank [19] and HITS [12], which have been successfu lly used for ranking Web pages on the Web graph. Its 
advantages are also well recognized in text summarizati on [17,28–30].

For query-ori ented summarizati on, as summarization is driven by a query, the query relevance must be measure d in cer- 
tain ways. Commonly used unsuperv ised graph based ranking formulates the query’s effect either on sentence nodes by sen- 
tence-query relevance [17,30] or on links between sentences by query-sens itive similarity [28]. Both of these two measures 
need to be defined manually. Supervised graph based ranking, on the other hand, automaticall y learns how sentence simi- 
larity is skewed by query from the documents and the corresponding human abstracts that have already been available [18].
An obvious problem with such kind of supervised ranking is that no one can precisely measure the sentence similarity with 
or without consideration of the effect of the given query. A more convenient and effective way to impose the query’s influ-
ence on the graph is to apply a semi-supervise d learning approach. Being halfway between supervise d and unsupervised 
learning, semi-supervise d learning benefits from both labeled and unlabeled data. With semi-super vised graph based rank- 
ing, one can model the given query as the only labeled node on the graph which is independen t of the other unlabeled sen- 
tence nodes. The label here indicates the query relevance. Initially, query relevance of the sentences is supposed to be 
unknown. Through the structure of the graph, the query relevance is then recursively propagated from the query to the sen- 
tences [6,13,14,22].

A deficiency of the conventional pairwise graph based modeling that one can observe is its inability to completely capture 
n-ary association among multiple sentence s. For example, a group of sentence s may be highly related to one another and 
collectively describe one aspect or subtopic of an event. Here, the group association information cannot be totally ignored 
in sentence ranking. However, it is not easy to directly superimpose such complex associations among multiple sentences 
on a conventional graph where only pairwise relationship is described. It is obvious that even richer informat ion cannot 
be added into a conventional graph any more. To alleviate the problem, we propose to model sentence s and their associa- 
tions as a hypergraph, i.e. a generalizati on of the conventional graph, which is able to formulate more types of relationships 
including both pairwise and group ones. Two basic issues addressed in this paper are: (1) how to construct a text hypergraph 
for summari zation and (2) how to develop a hypergraph based semi-supervise d learning algorithm for sentence ranking. 
Then, the main contributions of our work are: (1) a more natural and appropriate text representation is investigated to char- 
acterize as much as useful associations among sentences and (2) semi-supervise d ranking and hypergraph modeling are 
integrated into a unified summarizati on framework. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the related work on graph based summa- 
rization, the background of hypergrap h modeling and its applicati ons, and graph/hy pergraph based semi-supervi sed learn- 
ing. Section 3 explains the deficiency of graph modeling. Sections 4 and 5 then provide fundamenta ls of hypergraph 
modeling, introduce our text hypergraph constructi on algorithm, and detail the hypergraph based semi-supervi sed sentence 
ranking algorithm. Section 6 reports experime nts and evaluations. Finally, Section 7 concludes the paper. 
2. Background and related work 

Extractive summarization selects sentence s from documents to form summaries directly without any sort of paraphrase. 
For query-ori ented summari zation, the sentences extracted are required to not only be relevant to query but also contain the 
most significant information in documents. 

In general, existing summarizati on approach es fall into two categories, i.e. feature based approaches and graph based ap- 
proaches. Feature based approach es assign a significance score to each sentence and select the sentences with the highest 
scores into a summary . Significance is often computed by a linear combinati on of various query dependent and query indepen- 
dent features, such as similarity between sentence and query, term frequenc y, sentence position, centroid [21], signature term 
[15], and event features [31]. The difficulty of feature based approaches mainly lies in the assignment of feature weights. Man- 
ually assigned weights can hardly achieve predictable performanc e since there are a large amount of parameter combinations. 
Meanwhile, supervise d learning of weights requires high quality and high quantity training data which is hard to obtain. 

In recent years, inspired by link analysis based ranking algorithms, like PageRank [19] and HITS [12], which have achieved 
much success in Web page ranking, graph based approaches have attracted much attention in the summarizati on research. 
Compared with feature based approaches in which sentences are calculated independen tly, graph-based approaches take 
into account the associations among sentence s and rely on sentence associations to calculate a significance score for each 
sentence. Graph based summarizati on approaches usually model sentences in one document or a set of documents to be 
summarized as a weighted text graph. Sentence significance scores are then recursively calculated accordin g to the global 
structure of the entire text graph rather than individual sentence s alone. For example, PageRank-lik e algorithms, such as Lex- 
Rank [7], model documents as a stochastic graph in which the transition probabili ty between two sentence s is proportio nal 
to their similarity. Then the significance of each sentence is scored by calculating the stationary distribution of the stochastic 
graph. Furthermore, the topic sensitive LexRank algorithm [17] is proposed for query-oriented summarization, in which the 
transition probability consists of two parts: the query relevance is propagated from a sentence to its similar sentences with 
probability of d, and to those sentences that are similar to the query with probabili ty of (1 � d). While PageRank-lik e algo- 
rithms normally consider similarity or association between sentences, Zha [33] proposes to accomplish key phrase extrac- 
tion and generic summarization simultaneou sly by modeling text as a weighted undirected bipartite graph. Then, 
significance scores of key phrases and sentences are generate d based on mutual reinforceme nt of terms and sentences. Later, 
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Wan et al. [23,24] put Zha’s work forward. They build a mixed model with sentence s (or clusters) as hubs and terms as 
authorities. In their work, mutual reinforcement exists not only between hubs and authorities but also in hubs and author- 
ities themselves. Wei et al. [28–30] integrate the notion of mutual reinforce ment into PageRank- like algorithms . They intro- 
duce a unified mutual reinforce ment chain, where reinforcement among terms, sentences and documents are considered 
simultaneou sly. Meanwhile, PNR 2 by Li et al. [13] adds the negative reinforcement between sentences, and MRSP by Du 
et al. [6] turns the historical sentences into sink points which are limited their reinforcement with other sentence s. 

A hypergraph is a generalizati on of a graph, where edges can connect any number of nodes. Hypergraph has proved to be 
a successfu l tool to represent and model complex concepts and structures in computer science. Of its various applications ,
hypergraph based partitioning has been widely used in many areas including relational database [9], data mining [10], VLSI 
design [11] and video summarizati on [27]. It has been concluded that hypergraph based clustering performs better than tra- 
ditional graph based clustering (e.g. K-Means) on high dimension data [9,10]. Recently, hypergraph based document catego- 
rization has been explored as well [36]. In [36], documents to be classified are regarded as nodes on a hypergraph while each 
word corresponds to a hyperedge that connects all the documents containing this word. To our best knowledge, there is no 
previous work reported on hypergraph based text summarization yet. 

Semi-superv ised learning automaticall y exploits unlabeled data in addition to labeled data in order to improve learning 
performanc e. Among them, graph based semi-super vised learning has attracted a lot of attention recently. It is non-paramet- 
ric and can easily adapt to large datasets. In graph based semi-supervi sed learning, a graph is defined with nodes represent- 
ing labeled and unlabeled examples in the dataset and edge weights reflecting the similarity between examples. The goal of 
graph based semi-supervi sed learning is to estimate a function on the graph, which can then be used to predict node labels. 
Based on the prior assumption [34] that nearby points and the points on the same manifold are likely to have the same label 
(or similar scores), the function to be estimated is required to be consistent with labeled data and meanwh ile locally smooth 
on the graph. These two constraints (called fitting constrain t and smoothness constraint, respectivel y) are usually formu- 
lated by a regularization function that consists of a fitness regularizer and a smoothness regularizer. Up to now, the smooth- 
ness regularizer is the focus of research and different smoothness regularizers have been explored, such as combinati onal 
graph Laplacian in the Gaussian random fields and harmonic function method [36], normalized graph Laplacian in the local 
and global consistency method [34], and local linear regularization in the linear neighborhood propagat ion (LNP) method 
[26].

The success of graph based semi-supervise d learning has prompted researchers to further study semi-supervise d learning 
on hypergraph. For example, Corduneanu and Jaakkola [4] address a more general semi-supervise d classification problem 
where a label distribution instead of a fixed label is learned for each node on a hypergraph. They propose a regularization 
function based on the Kullback –Leibler (KL) divergences among distribution s on a hyperedge. Zhou et al. [35] also propose 
the hypergraph Laplacian which is deduced from a hypergraph based smoothnes s function similar to the one they use for 
graph in the local and global consistency method. Their hypergraph Laplacian has proved to be quite effective and been suc- 
cessfully applied in the tasks like automatic image annotation [25] and image segmentation [5]. Zhou et al.’s work is funda- 
mental to the hypergraph based semi-supervise d sentence ranking algorithm introduce d in Section 6. Our focus in this work, 
however, is semi-super vised ranking, other than classification.
3. Problem statement 

Pairwise relationship s among the objects to be ranked are generally assumed in the traditional graph based ranking algo- 
rithms, where each node in the graph stands for an object and two nodes are connected by an edge if there exist some kind of 
relationship between them. Under this assumption, it is natural to use a graph to represent a set of objects endowed with pair- 
wise relationshi ps. The graph can be directed or undirected, depending on whether the relationship s among the objects are 
symmetric or asymmetr ic. The text graph constructed upon symmetric sentence similarity is a typical example of undirected 
graphs, whilst a well-known instance of directed graphs is the WWW, where pages are connected by directed hyperlinks. 

However, in many real world applications , the relationships among the objects are more complicated than simple pair- 
wise ones. For example, in interpers onal networks , there exist not only pairwise relationship s like ‘‘friend’’ and ‘‘lover’’, but 
also group relationship s like ‘‘family’’ and ‘‘organization’’ , which normally involve more than two participants . It is important 
and challenging to simultaneously exhibit various types of relations, not limited to only one type of pairwise relations. One 
way of modeling such rich information is to represent the objects and their relations in a hypergraph instead. At the same 
time, hypergraph models have achieved much success in classification and clustering for complex relational data. 

Similarly, we have an analogous situation in graph based summarization. Most previous graph based summarizati on ap- 
proaches use conventi onal text graph to represent one document or a set of documents to be summarized , in which each 
node stands for a sentence and the edge weight is defined as the similarity between two sentences. The graph simply built 
on pairwise sentence similarity cannot fully capture the informat ion carried in the documents. For example, a given topic or 
event usually covers a few aspects or subtopics1 [32]. Each subtopic is composed of a set of senten ces each of which plays the 
same role in expressing the subtopic. Fig. 1 shows a hypergrap h example where five hypered ges (i.e. e1, e2, etc.) represen t five
subtopic s for a given event. Howeve r, such subtopic informatio n is difficult to be represented in the conventiona l pairwise 
1 The notion of subtopic in our paper is the same as that of topic in some referenced papers. 
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Fig. 1. Hypergraph representation of sentences describing one event. 
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similarity graph. Wan and Yang [24] has made used of the subtopic informa tion in a two-level graph and illustrat ed that the 
addition of subtopic s can effective ly improve the summary quality. In this paper, we mainly explore how to incorporat e the 
subtopic informa tion into a hypergrap h. We believe that hypergraph can provide a more natural and appropriat e way to model 
non-pairw ise relationsh ips. More precisely, the group relationsh ips can be easily incorporated by adding a hypered ge to connect 
the sentences in the same group. Meanw hile, a hypergrap h still allows the connection s, which are held between the two sen- 
tences with pairwise relations, to be retained . Through this text represen tation, both the ‘‘local’’ pairwise similarity informatio n
and the ‘‘global’’ group common ality informa tion such as subtopic can be preserved. 

4. Text hypergraph modeling 

4.1. Fundamenta ls of hypergraph 

A hypergraph is a generalization of the conventional graph. Hyperedges are arbitrary subsets of the node set, i.e. the 
hyperedges can connect two or more nodes on a hypergraph. Formally, a hypergraph can be defined as G = (V,E), where 
V = {v1, v2, . . . , vn} is the set of nodes and E = {e1, e2, . . . , em} is a set of hyperedges, where ei # V for i = 1, 2, . . . , m. Clearly, 
the hypergraph is degenerated into a standard graph when jeij = 2 for all i = 1, 2, . . . , m. The sizes of V and E are denoted 
by jVj and jEj, respectivel y. 

A weighted hypergraph G = (V,E,W) is a hypergraph that has a positive weight w(e) associated with each hyperedge e 2 E.
For a node v 2 V, its degree is defined by 
dðvÞ ¼
X

fe2Ejv2eg
wðeÞ ð1Þ
And the degree of e 2 E is defined to be 
dðeÞ ¼ jej ð2Þ
A hyperedge e is said to be incident with a node v if v 2 e. It is worth noting that there is one to one correspondenc e between 
a hypergraph and a 0–1 matrix. Given a hypergraph, its matrix representat ion H, called the incidence matrix , is defined as 
hðv ; eÞ ¼
0; if v 2 e

1; if v R e

�
ð3Þ
For example, the hypergraph illustrate d in Fig. 1 can be represented using the following incidence matrix: 
e1
 e2
 e3
 e4
 e5
v1
 1
 1
 0
 0
 0

v2
 1
 0
 0
 0
 0

v3
 1
 0
 0
 0
 1

v4
 0
 1
 0
 0
 0

v5
 0
 1
 1
 0
 0

v6
 0
 0
 1
 1
 0

v7
 0
 0
 0
 1
 1
With the incidence matrix, the degrees of the node v and the edge e can be simply denoted as 
dðvÞ ¼
X
e2E

wðeÞhðv; eÞ ð4Þ
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and
dðeÞ ¼
X
v2V

hðv ; eÞ ð5Þ
Let Dv and De denote the diagonal matrices containing the node and the hyperedge degrees respectivel y, and W denote the 
diagonal matrix containing the hyperedge weights. Then the adjacency matrix A of G is defined as A = HWHT � Dv. Notice 
that when we mention a hypergraph in the rest of the paper, we refer to an undirected text hypergraph built upon similarity 
measures unless otherwis e specified.

4.2. Construction of text hypergraph 

Unlike in the applicati ons such as citation analysis where the construction of one hypergraph based on the relationships 
among authors and articles is straightforw ard, the constructi on of text hypergraph is not direct but requires an additional 
process to discover group relationship s. In this paper, we mainly explore how to combine the subtopic informat ion in a
hypergraph, though there are many different ways to define such group relationships among the sentences. Same as Wan’s 
work, we adopt the clustering algorithms in the representat ion of the subtopic s. 

DBSCAN (Density Based Spatial Clustering of Application s with Noise) is a density based clustering algorithm proposed by 
Easter et al. [8]. The key idea of Easter’s DBSCAN is that for each node in a cluster (except for those border nodes), the neigh- 
borhood of a given radius should contain at least a minimum number of nodes. Or rather, the density around the node should 
exceed a given threshold. The reason we choose DBSCAN for clustering is twofold. First, DBSCAN does not need a predefined
cluster number as the input parameter. It can automatically determine the number of clusters during the clustering process. 
Second, unlike other clustering algorithms which endow each node with a cluster id, DBSCAN is capable of filtering the noise 
nodes, i.e. the nodes not belonging to any cluster. Using DBSCAN, we need to assign appropriate values to two basic param- 
eters, namely Eps and MinPts, which defines the search radius from each node and the minimum number of the nodes that 
should be contained in the neighborho od, respectively. According to the directly density-reac hable property of DBSCAN, the 
value of MinPts means that a cluster is compose d of at least MinPts nodes. It seems unreasonable that too few nodes com- 
prise one cluster and MinPts is usually empirically set as 4. To automatically tune the parameter Eps in DBSCAN, we apply a
modified DBSCAN algorithm to cluster the sentences. 

Formally, a document set D = {s1, s2, . . . , sn} containing n sentences and an associated query s0, each sentence si is repre- 
sented by a weighted term vector under the VSM (vector space model) scheme. The weight of a term is calculated using the 
inverse sentence frequenc y (ISF) [1] with the intuition that the terms contained in a few sentences should be more important 
than those appearing in many sentences. Let sft denote the number of the sentences that contain the term t, then ISF of t is
calculated by isft = log((n + 1)/sft). The distance between two sentences si and sj (0 6 i, j 6 n), which is fundamenta l to 
DBSCAN, is then defined as 
distðsi; sjÞ ¼ 1� cosineðsi; sjÞ ð6Þ
where cosine(si,sj) is the cosine similarity between si and sj, and cosine(si,sj) = si � sj/(jsijjsjj). Since the cosine(si,sj) value ranges 
from 0 to 1, the value of dist(si,sj) is between 0 and 1 as well. According to the weighted terms, the whole documents are 
separated into several clusters as well as a noise set, each of which is composed of a set of sentence s. It is ideal that short 
sentences with little information and sentence s away from the topic are seen as noise. 

The clustering results of DBSCAN, generally, are quite sensitive to the settings of parameter Eps. On the one hand, given a
very large Eps value, say 0.99, almost all the sentences will be grouped into one cluster. On the other hand, if we choose a
small value as the search radius, then almost all the sentences will be detected as noise. Since the scope of subtopics varies 
from one to another, it is hard to define a fixed Eps value as search radius. A feasible solution is to start clustering with a
larger Eps value, say 0.8. Each time when a cluster is formed, its clustering result is examined to see if it is ‘‘reasonabl e’’. 
The criterion of judging whether the clustering result is reasonable is that no cluster is allowed to include a large number 
of sentence s (e.g. one third of all the sentence s) in a document set. If this constraint is not satisfied, the sentences will be 
re-clustered with an automatically adjusted smaller Eps value until a reasonable clustering result is obtained. Then the 
Eps value can be automaticall y tuned during the re-clusterin g process with the complexity of O (tn logn) where t means
the iteration times and n means the number of sentences. We call this derived clustering algorithm as the modified DBSCAN 
algorithm. It is depicted in Fig. 2.

The modified DBSCAN algorithm assures that there is no dominant cluster, i.e. the cluster including the majority of the 
sentences. The clustering result looks rather reasonable when we look through them carefully. For example, for the DUC to- 
pic D0601A (i.e. the topic of native American Reservation system), out of a total of 1132 sentences (including the query), 733 
are identified as noise. This is rather reasonable since many sentence s are either too short or do not carry enough informa- 
tion. The rest 399 sentences are grouped into 25 clusters. The size of the largest cluster is 162, while the sizes of the other 24 
clusters range from 4 to 25. We can see that these 25 clusters have described the different subtopics of Native American Indi- 
ans. For instance, the largest cluster (Cluster 3) is mainly about the common problems existed in the Indian communitie s, 
such as unemploymen t, crime and drug abuse, while Cluster 1 focuses on the progress that has been made in an Indian town 
called Pine Ridge, and Cluster 8 talks about the government budget for American Indian reservations. These clusters are com- 
posed of the subtopics (hyperedges) illustrate d in Fig. 1.



Fig. 2. The modified DBSCAN algorithm. 
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Once the clusters are obtained, we construct the text hypergraph as follows: (1) if the cosine similarity between the two 
sentence si and sj is positive, then we add a hyperedge to connect them with the weight w(e) as cosine(si,sj) and (2) C is
composed of all the clusters (i.e. c1, c2, . . . , ct, etc.) generated by the modified DBSCAN. For the sentences st1 ; st2 ; . . . ; stk

ð0 6 ti 6 n;1 6 i 6 kÞ which are in the same cluster ct, we add a hyperedge e to connect them with the weight w(e) defined
as the cosine similarity between the cluster ct and the whole document, i.e. cosine(ct,D). In addition, the elements in incident 
matrix H, edge degree matrix De and vertex degree matrix Dv, are set their correspond ing values. We can see that b is a
parameter balancing the relative importance of cluster hyperedges compared with pairwise hyperedges. The Construc tHy- 
pergraph algorithm has the complexity of O(n logn) as in Fig. 3.

5. Hypergraph based semi-supervised learning for sentence ranking 

It has been well acknowled ged that sentence ranking is the issue of most concern under the extractive summarization 
framework. Sentence ranking has long been addressed in an unsuperv ised manner. Facilitated by the advances in machine 
Fig. 3. The algorithm of constructing text hypergraph. 
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learning, supervise d and semi-supervise d approach es have been investiga ted in recent past to learn the sentence significance
for ranking [3,33]. The bottleneck of learning based sentence ranking is the acquisition of training data. Manual annotatio n of 
training data is a complex and arduous task both time-consumi ng and costly. In this paper, we explore how to take advan- 
tage of the existing labeled sentences to develop the hypergraph based semi-supervise d sentence ranking for labeling those 
unlabeled sentence s in query-oriented summarization. 

Given the hypergraph representation of a document set, one way to make convenie nt and better use of the information 
carried on the hypergrap h is to treat sentence ranking as a semi-supervise d learning process, in which the query is regarded 
as the only labeled node, whilst the sentence s in documents as unlabeled nodes. In fact, the only informat ion we have at the 
very beginning about how to select the most significant sentences to generate one summary is the query alone. Hence, ini- 
tially the query is assigned with a positive significance score (e.g. 1 in Algorithm 3) and the significance scores of the sen- 
tences in the documents are assigned zero. Then sentence scores are learned step by step from the query through the 
structure of the hypergraph. The key idea behind hypergraph based semi-supervise d ranking is that the nodes which have 
many incident hyperedges in common should be assigned with very similar scores. This just fits well in the context of sum- 
marization. In particular , we have the following two assumpti ons (or to say constraints):

1. The sentences with higher cosine similarity should have significance scores that are more similar to each other. 
2. The sentences in the same cluster that talk about the same topic should have similar scores. 

Given a weighted hypergraph G = (V,E,W), which represents the documents to be summarized, and a scoring function f
over V, which assigns the sentence v the score f(v). We may think of f as a vector in Euclid space RjVj. Then, the functiona l
X(f) is defined to formalize the above-ment ioned two assumptions. 
Xðf Þ ¼ 1
2

X
e2E

1
dðeÞ

X
fu;vg# e

wðeÞ f ðuÞffiffiffiffiffiffiffiffiffiffi
dðuÞ

p � f ðvÞffiffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

ð7Þ
where {u,v} # e means that two edges u, v are included in the same edge e, and d(e) and w(e) respectively denote the degree 
and weight of edge e. The function X(f) sums the changes of the scoring function f over the hyperedges on the hypergraph. 
On the one hand, a good scoring function should make X(f) as small as possible, i.e. the sentence s which share higher cosine 
similarity or exist in the same cluster should have scores that are more similar to each other. On the other hand, a good scor- 
ing function should be consistent with the given initial score vector. As mentioned previousl y, the initial score of the query is 
Fig. 4. HyperSum: hypergraph based semi supervised ranking summarization algorithm. 



Fig. 5. The summary generated for Topic D0601A. 
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assumed to be 1 and the initial scores of the other sentences 0. Let y denote the initial score vector, then the significance 
scores of the sentences are learned recursively by solving the following optimization problem: 
argminf2RjV j fXðf Þ þ ukf � yk2g ð8Þ
where u > 0 is the paramete r specifying the tradeoff between the two competitive terms. Zhou has proved that this optimi- 
zation problem has a closed form solution [35].
f � ¼ ð1� aÞðI � aHÞ�1y ð9Þ
where a = 1/(1 + u) and H ¼ D�1=2
v HWD�1

e HT D�1=2
v . The above equation can then be re-formulated as: 
f � ¼ aHf � þ ð1� aÞy ð10Þ
Eq. (10) can be explained from another perspective. First, we assign a positive significance score to the query node and zero 
scores to the remaining nodes. All the nodes then spread their significance scores out to their nearby neighbors via the 
hypergraph. The weights of the transitions between any two nodes are defined by H. a is a paramete r that specifies the pro- 
portion of how much a node should learn from its neighbors , and how much it should learn from the specified initial scores 
of the labeled nodes. The propagat ion process is repeated until a global stable state is achieved. Then all the nodes obtain 
their final significance scores. To compute f⁄, we apply an iterative approach, which assigns f⁄ with an initial value and then 
calculate the new value of f⁄ by Eq. (10) until the convergence is reached. 

Once the sentence significance scores are ready, we rank sentence s in descending order of the calculated scores and the 
sorted sentence s T ¼ fst1 ; st2 ; . . . stng from which the highest ranked sentences are picked into a summary which is denoted by 
a sentence set SUM. To avoid the redundancy in the generated summary , each time when the top ranked sentence sti

is exam- 
ined as a candidat e summary sentence, the cosine similarity between it and each of the previously selected summary sen- 
tences s 2 Sum is calculated. If the similarity cosineðsti

; sÞ exceeds a pre-defined threshold (e.g. 0.7), the candidate sentence is 
discarded. This procedure is repeated until the summary length l reaches the limit of words (e.g. 250 words). We call this 
query-oriented summarization approach based on the hypergraph representat ion and semi-super vised learning paradigm 
HyperSum. The algorithm of HyperSum is detailed in Fig. 4.

We still take topic D0601A (i.e. the topic of native American Reservation system) for example, Fig. 5 lists the generated 
summary which is composed of 10 sentence s. From the figure, we can see that Sentences (1), (5) and (8) are from Cluster 
3 talking about the common problems existed in the Indian communitie s, Sentences (2) and (4) are from Cluster 8 involving 
the government actions for the reservations, and Sentence (10) is from Cluster 1 about an Indian town called Pine Ridge. 
Normally, important sentences are preferred to be extracted from important clusters. 

6. Experiment and evaluation 

6.1. Experiment set-up 

The query-oriented multi-document summarization task defined in DUC evaluations requires generating a concise and 
well organized summary for a set of topic related documents according to a query which describes the users’ information 
need. The query usually consists of a title and one or more narrative /question sentences. 



Table 1
Experiment data. 

DUC 2005 2006 2007 

Collection # 50 50 45 
Avg Doc # per docset 32 25 25 
Avg Sen # per coll. 914 705 499 
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Our experiments are conducted on the DUC 2005, 2006 and 2007 data sets, which respectively contain 50, 50 and 45 doc- 
ument sets (docsets). The DUC 2005 data set has 25–50 documents (averaged 32 documents ) per docset while DUC 2006 and 
2007 data sets contain 25 documents per docset, as illustrated in Table 1. The length of one system-generated summary is 
strictly limited to 250 words. Stop-words in both documents and queries are removed using a stop-word list of 598 words. 
The remaining words are stemmed by Porter Stemmer 2 and considered as terms. As for the evaluation metric, it is difficult to 
come up with a universa lly accepted method to measure the quality of system-g enerated summaries. In this work, ROUGE (Re-
call-Orient ed Understu dy for Gisting Evaluation ) metrics [16], especially ROUGE-2 and ROUGE-SU4 3 and their correspondi ng 
95% confidential intervals , which have been officially adopted by the DUC, is used to automaticall y evaluate the content of sys- 
tem-gener ated summari es. 

In this section, we present the performanc e evaluation of five sets of experiments which are conducted: (1) to examine 
the influence of the two paramete rs in HyperSum, i.e. the learning factor a and the cluster importance factor b, on summa- 
rization performance; (2) to analyze the performance of different clustering algorithms in addition to the modified DBSCAN 
algorithm in hypergraph construction; (3) to analyze the performanc e using different similarity metrics in hypergraph con- 
struction; (4) to verify the advantage of the text hypergraph representat ion by comparing the performanc e of HyperSum with
the performance of the conventional graph based ranking algorithms like topic sensitive PageRank, HITS and manifold which 
have previously been adopted in query-oriented summari zation; and (5) to compare HyperSum with the state-of-the- art DUC 
participatin g systems. 
6.2. Parameter tuning 

The goal to conduct the following experiments is to find the appropriate values for the two paramete rs in HyperSum, i.e. 
the learning factor a (0 < a < 1), and the cluster importance factor b (b > 0). The combination of the two factors makes it hard 
to find a global optimized solution. So we apply a gradient search strategy. At first, the cluster importance factor b is set to a
value, e.g. b = 1.0. Then the performanc e using different values of a ranging from 0.1 to 1 is evaluated. After that, we fix a with
the value which has achieved the best performance, and conduct experiments to find an appropriate value for b in the range 
from 0.0 to 2.0. 
6.2.1. The learning factor a
First of all, the cluster importance factor b is fixed to 1, i.e. the cluster hyperedge is as important as the pairwise cosine 

similarity hyperedge. Figs. 6 and 7 present the ROUGE-2 and ROUGE-SU4 evaluation results of HyperSum, with regard to dif- 
ferent values of a on the DUC 2006 data set. We can see that the performanc e of HyperSum gets better as a increases from 0.1 
to 1. It reaches the peak at around 0.97–0.98 and drops afterwards. As mentioned in Section 4, a can be deemed as a factor 
that specifies the proportio n of how much a sentence should learn from its neighbors and how much it should learn from the 
specified initial score vector. The experimental results suggest that a sentence learns its significance score mainly from its 
neighbor sentences. However, this does not mean that the initial score vector y is not important. As we can see, after reaching 
its peak, as a approaches to 1, the performanc e gets worse. This phenomenon can be explained as follows: for query-oriented 
summarizati on, an ideal summary is required to contain the salient sentences that not only represent the main themes of the 
documents but are also relevant to the query. As for HyperSum, it is the initial score vector that provides the guidance of the 
query for sentence scoring, with the intensity of this guidance specified by (1 � a). As a gets nearer to 1, the query’s influence
gets weaker, resulting in the degradation of system performanc e. 
6.2.2. The cluster importance factor b
Next, we fix the learning factor a at 0.98. Figs. 8 and 9 illustrate the performance of HyperSum on the DUC 2006 data set 

with respect to the different values of b ranging from 0.0 to 2.0. When b = 0, it means that the weight of the cluster hyperedge 
is 0 and thus only the pairwise cosine similarity information is considered for the calculatio n of sentence significance scores. 
As we can see, when the cluster information is considered , i.e. b > 0, the performance is improved in most cases. This justifies
the use of text hypergraph, which incorporate s the group informat ion and the pairwise information, to represent the 
2 The porter stemmer is downloa ded from http://tartarus .org/simmartin/PorterStemmer/ . Here we do not further involve the meaning ambiguity of the 
stemmed words, since the disambiguation cost is high and may not bring much performance impro vement. 

3 Jackknife scoring for ROUGE is used in order to compare with the human summaries. 

http://duc.nist.gov


Fig. 6. ROUGE-2 with a = [0.1, 0.99]. 

Fig. 7. ROUGE-SU4 with a = [0.1, 0.99]. 

Fig. 8. ROUGE-2 with b = [0, 2]. 

Fig. 9. ROUGE-SU4 with b = [0, 2]. 
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documents. Besides, it is observed that the best performanc e is achieved when b is set to 1.5. This result suggests that cluster 
hyperedges should be assigned higher weights than pairwise cosine similarity hyperedges. 

6.3. Comparison of clustering algorithms 

In this set of experiments , four additional clustering algorithms are explored for hypergrap h constructi on and they are 
compared against the proposed modified DBSCAN algorithm. The four selected algorithms include K-means clustering, latent 
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Dirichlet allocation (LDA), agglomerati ve clustering, and divisive clustering, which perform the clustering and organize the 
clusters in different ways. 

6.3.1. K-means clustering 
It is a partition based clustering algorithm. It first randomly picks k nodes as cluster centroids, assigns each node to the 

nearest cluster and then re-computes the cluster centroids. The above steps are repeated until the cluster centroids do not 
change any more. 

6.3.2. Latent Dirichlet allocation 
LDA is a hierarchical Bayesian model which models the word level, document level and corpus level into a uniform frame- 

work [2]. In our sentence extractive summari zation task, we see each sentence as one document and LDA can cluster each 
sentence with a probability distribution over subtopic s. The subtopic with the highest probability is taken as the cluster 
which the sentence belongs to. 

6.3.3. Divisive clustering 
It is a top-dow n hierarchical clustering algorithm, which starts with an all-inclusive cluster. During each step, the largest 

cluster is bisected so that the resulting 2-way clustering solution optimizes under a particular clustering criterion. 

6.3.4. Agglomera tive clustering 
It is bottom-up hierarchical clustering algorithm which starts with each node as a single cluster. At each step, two clusters 

which are the most similar are merged until the clusters are too far apart to be merged. 
Notice that both K-means clustering and LDA require a pre-defined cluster number k. However, given a document set, it is 

not easy to predict the cluster number in advance. One commonly used method is setting the cluster number as 
ffiffiffi
n
p

[24].
Here we also tested different cluster numbers changing from 5 to 50 with intervals of 5 when the parameters a an b are
0.98 and 1.5 respectively, and the cluster number with which the summary gets the highest ROUGE-2 score is assumed 
as the optimum value of the correspondi ng document set. These two methods of setting the cluster numbers are combined 
with K-means clustering and LDA which are denoted as Kmeans-sqrt, Kmeans-best, LDA-sqrt and LDA-best respectively in 
Figs. 10 and 11 . Divisive clustering and agglomerati ve clustering do not require the specification of cluster number and 
are implemented using the free software Cluto. 4 The cluster similar ity used in these three algorith ms is calculated by the co- 
sine similar ity between the two clusters, i.e. cosine(ci,cj).

Figs. 10 and 11 plot the ROUGE-2 and ROUGE-SU4 results of the five clustering algorithms, given that the parameter b
changes from 0 to 2 (the value of learning factor a is fixed as 0.98). From the two figures, we can see that modified DBSCAN 
outperform s the other four algorithms. Moreover, in most cases, by using the clustering results of the algorithms other than 
modified DBSCAN, the system’s performanc e degrades or almost keeps unchanged compared with that when the cluster 
information is not considered, i.e. b = 0. This conforms to our expectation, because except for modified DBSCAN, all the other 
algorithms by nature are not capable of detecting noise, i.e. they may form the clusters containing many noise sentences. 
Furthermore, in DUC data sets, there are many noise sentence s which are not suitable to be selected as the summary sen- 
tences. Since members of the same cluster tend to have similar scores, these noise sentences are likely to be assigned with a
high significance score and then picked up into the summary incorrectly. 

6.4. Comparison of similarity metrics 

In our work, the foundation of constructing a hypergraph is the relationship between sentences, which is implemented 
through similarity computati on. In this subsection, we aim to verify whether the hypergraph based semi-supervi sed ranking 
can be adapted to other similarity metrics. Here, we experiment on DUC2006 with two other commonly used similarity met- 
rics, namely the Jaccard similarity and the Euclidean similarity respectivel y. The formula to calculate these two similarities 
are listed as follows: 
4 http
JaccardSimðsi; sjÞ ¼
P

tk2ðsi\sjÞminðfreqki; freqkjÞ � isfkP
tl2ðsi[sjÞmaxðfreqli; freqljÞ � isfl

ð11Þ

EuclidSimðsi; sjÞ ¼
0; if si \ sj ¼£

1=jsi � sjj; else

�
ð12Þ
where si and sj are two sentence s to be measure d which respectively contain a set of words, freqki denotes the frequency of 
term tk occurring in sentence si and jsi � sjj represents the Euclidean distance of si and sj.

The Jaccard similarity and the Euclidean similarity are respectively applied in the constructi on of the text hypergraph 
which is applied in HyperSum. Then, we still adopt the gradient search strategy to find the appropriate parameters: Fixing 
b to the value of 1.0, the performanc e using different values of a ranging from 0.1 to 1 is evaluated, and then with the fixed
://glaros.dtc.umn.edu/gkhom e/cluto/cluto/download .

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download


Fig. 11. ROUGE-SU4 with different clustering algorithms. 

Fig. 10. ROUGE-2 with different clustering algorithms. 
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value of a, an appropriate value for b in the range from 0.0 to 2.0 is searched. Through observin g the experimental results, we 
find that the performanc e curves using the Jaccard and Euclidean metrics exhibit a similar form with those using the Cosine
metric. The optimum values of a and b are also set as 0.98 and 1.5 respectively. Table 2 shows the peak performanc e using 
three similarity metrics, and we can see that the cosine metric exhibits obvious advantag e of measuring sentence similarity 
compared with the other two metrics. 
6.5. Graph model vs. hypergraph model 

To verify the effectivenes s of the proposed hypergraph based sentence ranking algorithm, we compare HyperSum with
two conventional graph based sentence ranking algorithms: one is developed based on topic sensitive PageRank, called 
query sensitive LexRank [16], and the other one is developed based on Kleinberg’s HITS [12].

Query sensitive LexRank represents the sentence s in a document set as a text graph. Each sentence node on the graph is 
viewed as a state in a Markov chain. From the current sentence , a transition is made to the sentences that are similar to the 
query q with the probability of d, and a transition is made to the sentence s that are lexically similar to the current sentence 
with probability of (1 � d). The transition probability between the two sentences, si and sj, is defined as: 
Table 2
Comparison of similarity metrics. 

ROUGE-2 ROUGE-SU4 

Cosine 0.09569 (0.08722–0.10404) 0.15182 (0.14424–0.15899)
Jaccard (1,1.5) 0.08235 (0.07292–0.09240) 0.13772 (0.12949–0.14644)
Euclidean (1,1.5) 0.07475 (0.06663–0.08362) 0.13294 (0.12569–0.14058)



Ta
Co
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pðsi ! sjÞ ¼ ð1� dÞ � simðsi; sjÞP
ksimðs; skÞ

þ d � simðsj; qÞP
ksimðsk; qÞ

ð13Þ
The significance score of each sentence is then obtained by calculatin g the stationary distribution of the Markov chain. In our 
implementati on of the query sensitive LexRank algorithm, d is set to 0.15 as in classical PageRank. 

When impleme nting HITS for query-oriented summarization, we simply select top 10% of the high query relevant sen- 
tences to construct the text graph accordin g to our experience. Query relevance is defined as the cosine similarity between 
the sentence and the query. Sentences are regarded as hub nodes and terms appearing in the sentence are regarded as 
authority nodes. By applying the mutual reinforceme nt principle as used in HITS, the ranks of sentences and terms are cal- 
culated simultaneou sly and iteratively. 
Vs ¼ A � Vt ; Vt ¼ AT � Vs ð14Þ
where Vs and Vt are the sentence score vector and term score vector respectively , A is the affinity matrix for sentences and 
terms, i.e. if sentence si contain term tj, then Ai;j ¼ isftj

� tfi;j (isftj
is the inverse sentence frequency of term tj, and tfi,j is the 

term frequency of term tj in sentence si). AT is the transpose of A.
Table 3 compares the ROUGE results of HyperSum with query sensitive LexRank and HITS on DUC 2006 data set. We can 

see that HyperSum outperforms query sensitive LexRank and HITS in all three measures. It is above query sensitive LexRank 
by 7.22% of ROUGE-2 and 3.77% of ROUGE-SU4, respectively . As for HITS, the improvem ents are 17.22% and 11.42% with re- 
spect to ROUGE-2 and ROUGE-SU 4. These achievements are significant since in the DUC evaluation except for the best sys- 
tem, the performance of the other top ranking systems are very close, i.e. the second best system is only 1.60% above the 
fourth best system on ROUGE-2 and 0.86% on ROUGE-SU4. Then the comparison is extended to DUC 2005 and 2007 data 
sets, which are shown in Table 4. We also can see that HyperSum is better than query sensitive LexRank and HITS with re- 
spect to both ROUGE-2 and ROUGE-SU4 scores. 

6.6. Comparison with DUC systems 

Next, we compare HyperSum with the DUC participating systems. 34 systems have been submitted for evaluation in DUC 
2006. To provide a global picture of the evaluation results, we provides (1) the worst human summari zer (denoted by H),
which reveals the gap between the system generated summari es and the human generated summari es; (2) top nine ranked 
DUC participating systems and one trail system (denoted by S24, S11 and so on); (3) the average ROUGE scores (denoted by 
SYS AVG); and (4) the NIST baseline, which randomly picks a document and selects the leading sentences. Then we can easily 
locate the position of our proposed approach within the ranking. Clearly, HyperSum ranks the first in the DUC 2006, as illus- 
trated in Table 5.

To further examine the adaptability of the proposed approach, we extend the previous experiments to the DUC 2005 
and DUC 2007 data sets. The parameters are set to the ones which have achieved the best performanc e on the DUC 2006 
data set, i.e. a = 0.98, b = 1.5. For both DUC 2005 and DUC 2007, 31 systems have participated in their evaluations . It is 
obvious that, HyperSum ranks the first with respect to ROUGE-2 in the DUC 2005, as illustrated in Table 6. As for DUC 
2007, Table 7 shows that HyperSum ranks the fifth. Since the details of text processing can influence the summarizati on 
performanc e, we find that all the systems (i.e. S15, S29, S4 and S24) better than ours have put much emphasis on the text 
preprocessing and summary post-processing such as sentence trimming and entity dereference [20]. In contrast, since the 
Table 3
Comparison with conventional graph based models on DUC 2006. 

ROUGE-2 ROUGE-SU4 

HyperSum (a = 0.98, b = 1.5) 0.09569 (0.08722–0.10404) 0.15182 (0.14424–0.15899)
Query Sensitive LexRank (d = 0.15) 0.08924 (0.08015–0.09720) 0.14630 (0.13853–0.15378)
HITS 0.08163 (0.07357–0.08924) 0.13625 (0.12787–0.14419)

ble 4
mparison with conventional graph based models on DUC 2005 and 2007. 

Data ROUGE-2 ROUGE-SU4 

2005 HyperSum (a = 0.98, b = 1.5) 0.07291 (0.06424–0.08086) 0.13087 (0.12226–0.13872)
Query Sensitive LexRank (d = 0.15) 0.07102 (0.06316–0.07829) 0.12641 (0.11834–0.13410)
HITS 0.68183 (0.05925–0.07641) 0.12245 (0.11318–0.13078)

2007 HyperSum (a = 0.98, b = 1.5) 0.11174 (0.10368– 0.11972) 0.16587 (0.15821–0.17417)
Query Sensitive LexRank (d = 0.15) 0.11025 (0.10204–0.11824) 0.16501 (0.15731–0.17271)
HITS 0.10470 (0.09580–0.11327) 0.15733 (0.14852–0.16574)



Table 5
Comparison with DUC 2006 system s. 

ROUGE-2 ROUGE-SU4 

H 0.13260 0.18385 
. . .

HyperSum 0.09569 0.15182 
S24 0.09558 0.15529 
S15 0.09097 0.14733 
S12 0.08987 0.14755 
S8 0.08954 0.14607 
S23 0.08792 0.14486 
S28 0.08700 0.14522 
S31 0.08576 0.14381 
S2 0.08536 0.14094 
S33 0.08444 0.14483 
. . .

S11 0.02834 0.06394 
SYS AVG 0.07463 0.13021 
NIST baseline 0.04947 0.09788 

Table 6
Comparison with DUC 2005 system s. 

ROUGE-2 ROUGE-SU4 

H 0.88593 0.14843 
. . .

HyperSum 0.07291 0.13087 
S15 0.07251 0.13163 
S17 0.07174 0.12972 
S10 0.06984 0.12525 
S8 0.06963 0.12795 
S4 0.06858 0.12773 
S5 0.06750 0.12324 
S11 0.06426 0.12551 
S14 0.06349 0.11763 
S16 0.06326 0.11897 
. . .

S23 0.02564 0.05569 
SYS AVG 0.05842 0.11205 
NIST baseline 0.04026 0.08716 

Table 7
Comparison with DUC 2007 system s. 

ROUGE-2 ROUGE-SU4 

H 0.17528 0.21892 
. . .

S15 0.12448 0.17711 
S29 0.12028 0.17074 
S4 0.11887 0.16999 
S24 0.11793 0.17593 
HyperSum 0.11174 0.16587 
S13 0.11172 0.16446 
S20 0.10879 0.15844 
S23 0.10810 0.16280 
S7 0.10795 0.15990 
S3 0.10660 0.15991 
. . .

S16 0.03813 0.07385 
SYS AVG 0.09597 0.14884 
NIST baseline 0.06039 0.10507 
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focus of this work is to address the issues of text hypergraph and semi-supervise d hypergrap h based ranking, we do not 
involve much preprocessing and post-processing, which will definitely boost the overall performanc e of our system and 
need further research. 
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7. Conclusions 

In this paper, we propose a novel query-ori ented summarizati on approach HyperSum which incorporate s the text hyper- 
graph into the semi-supervise d sentence ranking framework. In addition to the pairwise relationship in existing graph based 
models, a text hypergraph can integrate more group relations among multiple sentences. Under the assumpti on that a given 
topic or event usually covers several subtopics each of which is described by a group of sentences, in this paper we mainly 
consider the subtopic relationship as well as the pairwise ones which are formulated as hyperedges in a hypergrap h. 
Through the structure of the hypergraph, the query relevance is then recursively propagated from the labeled query to 
the unlabeled sentences. In HyperSum, selection of similarity metric and construction of subtopic s are two main problems. 
To select an appropriate similarity metric, we compare three widely used metrics: Cosine, Jaccard and Euclidean and find Co-
sine can achieve a better summari zation performanc e than the other two metrics. At the same time, various clustering tech- 
niques including K-means, agglomerative hierarchical clustering, divisive hierarchical clustering, latent Dirichlet allocation 
(LDA) and DBSCAN are compare d and a modified DBSCAN is finally proposed since it does not require a predefined cluster 
number and has the capability of removing noise. The experiments are conducted on three years of DUC (2005, 2006 and 
2007) data sets, verifying that HyperSum can be seen as one of the best systems in each year’s evaluation. We believe that 
HyperSum can be expected to reach a better performance in the query-oriented summarization task if more relations among 
sentences can be discovered and incorporate d in a hypergraph. In our future work, we will further investigate the discovery 
and computation of various relationshi p existing among sentences. 
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