
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 25–35,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Text-level Discourse Dependency Parsing

Sujian Li
1
 Liang Wang

1
 Ziqiang Cao

1
 Wenjie Li

2

1
Key Laboratory of Computational Linguistics, Peking University, MOE, China

2
Department of Computing, The Hong Kong Polytechnic University, HongKong

{lisujian,intfloat,ziqiangyeah}@pku.edu.cn

cswjli@comp.polyu.edu.hk

Abstract

Previous researches on Text-level discourse

parsing mainly made use of constituency

structure to parse the whole document into

one discourse tree. In this paper, we present

the limitations of constituency based dis-

course parsing and first propose to use de-

pendency structure to directly represent the

relations between elementary discourse

units (EDUs). The state-of-the-art depend-

ency parsing techniques, the Eisner algo-

rithm and maximum spanning tree (MST)

algorithm, are adopted to parse an optimal

discourse dependency tree based on the arc-

factored model and the large-margin learn-

ing techniques. Experiments show that our

discourse dependency parsers achieve a

competitive performance on text-level dis-

course parsing.

1 Introduction

It is widely agreed that no units of the text can be

understood in isolation, but in relation to their

context. Researches in discourse parsing aim to

acquire such relations in text, which is funda-

mental to many natural language processing ap-

plications such as question answering, automatic

summarization and so on.

One important issue behind discourse parsing

is the representation of discourse structure. Rhe-

torical Structure Theory (RST) (Mann and

Thompson, 1988), one of the most influential

discourse theories, posits a hierarchical genera-

tive tree representation, as illustrated in Figure 1.

The leaves of a tree correspond to contiguous

text spans called Elementary Discourse Units

(EDUs)
1
. The adjacent EDUs are combined into

1 EDU segmentation is a relatively trivial step in discourse

parsing. Since our work focus here is not EDU segmenta-

tion but discourse parsing. We assume EDUs are already

known.

the larger text spans by rhetorical relations (e.g.,

Contrast and Elaboration) and the larger text

spans continue to be combined until the whole

text constitutes a parse tree. The text spans

linked by rhetorical relations are annotated as

either nucleus or satellite depending on how sali-

ent they are for interpretation. It is attractive and

challenging to parse the whole text into one tree.

Since such a hierarchical discourse tree is

analogous to a constituency based syntactic tree

except that the constituents in the discourse trees

are text spans, previous researches have explored

different constituency based syntactic parsing

techniques (eg. CKY and chart parsing) and var-

ious features (eg. length, position et al.) for dis-

course parsing (Soricut and Marcu, 2003; Joty et

al., 2012; Reitter, 2003; LeThanh et al., 2004;

Baldridge and Lascarides, 2005; Subba and Di

Eugenio, 2009; Sagae, 2009; Hernault et al.,

2010b; Feng and Hirst, 2012). However, the ex-

isting approaches suffer from at least one of the

following three problems. First, it is difficult to

design a set of production rules as in syntactic

parsing, since there are no determinate genera-

tive rules for the interior text spans. Second, the

different levels of discourse units (e.g. EDUs or

larger text spans) occurring in the generative

process are better represented with different fea-

tures, and thus a uniform framework for dis-

course analysis is hard to develop. Third, to

reduce the time complexity of the state-of-the-art

constituency based parsing techniques, the ap-

proximate parsing approaches are prone to trap

in local maximum.

In this paper, we propose to adopt the depend-

ency structure in discourse representation to

overcome the limitations mentioned above. Here

is the basic idea: the discourse structure consists

of EDUs which are linked by the binary, asym-

metrical relations called dependency relations. A

dependency relation holds between a subordinate

EDU called the dependent, and another EDU on

25

which it depends called the head, as illustrated in

Figure 2. Each EDU has one head. So, the de-

pendency structure can be seen as a set of head-

dependent links, which are labeled by functional

relations. Now, we can analyze the relations be-

tween EDUs directly, without worrying about

any interior text spans. Since dependency trees

contain much fewer nodes and on average they

are simpler than constituency based trees, the

current dependency parsers can have a relatively

low computational complexity. Moreover, con-

cerning linearization, it is well known that de-

pendency structures can deal with non-projective

relations, while constituency-based models need

the addition of complex mechanisms like trans-

formations, movements and so on. In our work,

we adopt the graph based dependency parsing

techniques learned from large sets of annotated

dependency trees. The Eisner (1996) algorithm

and maximum spanning tree (MST) algorithm

are used respectively to parse the optimal projec-

tive and non-projective dependency trees with

the large-margin learning technique (Crammer

and Singer, 2003). To the best of our knowledge,

we are the first to apply the dependency structure

and introduce the dependency parsing techniques

into discourse analysis.

The rest of this paper is organized as follows.

Section 2 formally defines discourse dependency

structure and introduces how to build a discourse

dependency treebank from the existing RST cor-

pus. Section 3 presents the discourse parsing ap-

proach based on the Eisner and MST algorithms.

Section 4 elaborates on the large-margin learning

technique as well as the features we use. Section

5 discusses the experimental results. Section 6

introduces the related work and Section 7 con-

cludes the paper.

e1 e2

e1-e2*

e3

e1-e2*-e3

e1 e2

e1-e2*

e3

e1-e2-e3*

e1 e2

e1*-e2

e3

e1-e2-e3*

e1 e2

e1*-e2

e3

e1*-e2-e3

e1 e2

e2*-e3

e3

e1-e2*-e3

e1 e2 e3 e1 e2 e3

e1*-e2-e3

e2*-e3 e2-e3*

e1*-e2-e3

1 2 3 4

5 6 7 8

e1 e2 e3

e1-e2-e3*

e2-e3*

Figure 1: Headed Constituency based Discourse Tree Structure (e1,e2 and e3 denote three EDUs,

and * denotes the NUCLEUS constituent)

e1 e2 e3 e1 e2 e3 e1 e2 e3 e1 e2 e3

e1 e2 e3e1 e2 e3 e1 e2 e3e1 e2 e3

1' 2' 3' 4'

5' 6' 7' 8' 9'

e1 e2 e3

e0e0 e0 e0

e0 e0 e0 e0 e0

Figure 2: Discourse Dependency Tree Structures (e1,e2 and e3 denote three EDUS, and the directed

arcs denote one dependency relations. The artificial e0 is also displayed here.)

2 Discourse Dependency Structure and

Tree Bank

2.1 Discourse Dependency Structure

Similar to the syntactic dependency structure

defined by McDonald (2005a, 2005b), we insert

an artificial EDU e0 in the beginning for each

document and label the dependency relation link-

ing from e0 as ROOT. This treatment will sim-

plify both formal definitions and computational

implementations. Normally, we assume that each

EDU should have one and only one head except

for e0. A labeled directed arc is used to represent

the dependency relation from one head to its de-

pendent. Then, discourse dependency structure

can be formalized as the labeled directed graph,

where nodes correspond to EDUs and labeled

arcs correspond to labeled dependency relations.

26

We assume that the text
2
 T is composed of

n+1 EDUs including the artificial e0. That is

T=e0 e1 e2 … en. Let R={r1,r2, … ,rm} denote a

finite set of functional relations that hold be-

tween two EDUs. Then a discourse dependency

graph can be denoted by G=<V, A> where V de-

notes a set of nodes and A denotes a set of la-

beled directed arcs, such that for the text T=e0 e1

e2 … en and the label set R the following holds:

(1) V = { e0, e1, e2, … en }
(2) A V R V, where <ei, r, ej>A represents

an arc from the head ei to the dependent ej
labeled with the relation r.

(3) If <ei, r, ej>A then <ek, r’, ej>A for all ki

(4) If <ei, r, ej>A then <ei, r’, ej>A for all r’r
The third condition assures that each EDU has

one and only one head and the fourth tells that

only one kind of dependency relation holds be-

tween two EDUs. According to the definition,

we illustrate all the 9 possible unlabeled depend-

ency trees for a text containing three EDUs in

Figure 2. The dependency trees 1’ to 7’ are pro-

jective while 8’ and 9’ are non-projective with

crossing arcs.

2.2 Our Discourse Dependency Treebank

To automatically conduct discourse dependency

parsing, constructing a discourse dependency

treebank is fundamental. It is costly to manually

construct such a treebank from scratch. Fortu-

nately, RST Discourse Treebank (RST-DT)

(Carlson et al., 2001) is an available resource to

help with.

A RST tree constitutes a hierarchical structure

for one document through rhetorical relations. A

total of 110 fine-grained relations (e.g. Elabora-

tion-part-whole and List) were used for tagging

RST-DT. They can be categorized into 18 classes

(e.g. Elaboration and Joint). All these relations

can be hypotactic (“mononuclear”) or paratactic

(“multi-nuclear”). A hypotactic relation holds

between a nucleus span and an adjacent satellite

span, while a paratactic relation connects two or

more equally important adjacent nucleus spans.

For convenience of computation, we convert the

n-ary (n>2) RST trees
3
 to binary trees through

adding a new node for the latter n-1 nodes and

assume each relation is connected to only one

nucleus
4
. This departure from the original theory

2 The two terms “text” and “document” are used inter-

changeably and represent the same meaning.
3 According to our statistics, there are totally 381 n-ary rela-

tions in RST-DT.
4 We set the first nucleus as the only nucleus.

is not such a major step as it may appear, since

any nucleus is known to contribute to the essen-

tial meaning. Now, each RST tree can be seen as

a headed constituency based binary tree where

the nuclei are heads and the children of each

node are linearly ordered. Given three EDUs
5
,

Figure 1 shows the possible 8 headed constituen-

cy based trees where the superscript * denotes

the heads (nuclei). We use dependency trees to

simulate the headed constituency based trees.

Contrasting Figure 1 with Figure 2, we use

dependency tree 1’ to simulate binary trees 1 and

8, and dependency tress 2’- 7’ to simulate binary

trees 2-7 correspondingly. The rhetorical rela-

tions in RST trees are kept as the functional rela-

tions which link the two EDUs in dependency

trees. With this kind of conversion, we can get

our discourse dependency treebank. It is worth

noting that the non-projective trees like 8’ and 9’

do not exist in our dependency treebank, though

they are eligible according to the definition of

discourse dependency graph.

3 Discourse Dependency Parsing

3.1 System Overview

As stated above, T=e0 e1 …en represents an input

text (document) where ei denotes the i
th
 EDU of

T. We use V to denote all the EDU nodes and

VRV-0 (V-0 =V-{e0}) denote all the possible

discourse dependency arcs. The goal of discourse

dependency parsing is to parse an optimal span-

ning tree from VRV-0. Here we follow the arc

factored method and define the score of a de-

pendency tree as the sum of the scores of all the

arcs in the tree. Thus, the optimal dependency

tree for T is a spanning tree with the highest

score and obtained through the function DT(T,w):

0

0

0

, ,

, ,

(,)(,)

(, ,)

(, ,)f

T

T

i j T

T

i j T

G V R V

G V R V i j

e r e G

G V R V i j

e r e G

TDT T argmax

argmax e r e

argmax e r

s ore T G

e

c

w

w

where GT means a possible spanning tree with

(,)Tscore T G and () denotes the score of

the arc <ei, r, ej> which is calculated according to

its feature representation f(ei,r,ej) and a weight

vector w.

Next, two basic problems need to be solved:

how to find the dependency tree with the highest

5 We can easily get all possible headed binary trees for one

more complex text containing more than three EDUs, by

extending the 8 possible situations for three EDUs.

27

score for T given all the arc scores (i.e. a parsing

problem), and how to learn and compute the

scores of arcs according to a set of arc features

(i.e. a learning problem).

The following of this section addresses the

first problem. Given the text T, we first reduce

the multi-digraph composed of all possible arcs

to the digraph. The digraph keeps only one arc

<ei, r, ej> between two nodes which satisfies

() . Thus, we can

proceed with a reduction from labeled parsing to

unlabeled parsing. Next, two algorithms, i.e. the

Eisner algorithm and MST algorithm, are pre-

sented to parse the projective and non-projective

unlabeled dependency trees respectively.

3.2 Eisner Algorithm

It is well known that projective dependency pars-

ing can be handled with the Eisner algorithm

(1996) which is based on the bottom-up dynamic

programming techniques with the time complexi-

ty of O(n
3
). The basic idea of the Eisner algo-

rithm is to parse the left and right dependents of

an EDU independently and combine them at a

later stage. This reduces the overhead of index-

ing heads. Only two binary variables, i.e. c and d,

are required to specify whether the heads occur

leftmost or rightmost and whether an item is

complete.

Eisner(T,)

Input: Text T=e0 e1… en; Arc scores (ei,ej)

1 Instantiate E[i, i, d, c]=0.0 for all i, d, c

2 For m := 1 to n

3 For i := 1 to n

4 j = i + m

5 if j> n then break;

6 # Create subgraphs with c=0 by adding arcs

7 E[i, j, 0, 0]=maxiqj (E[i,q,1,1]+E[q+1,j,0,1]+(ej,ei))

8 E[i, j, 1, 0]=maxiqj (E[i,q,1,1]+E[q+1,j,0,1]+(ei,ej))

9 # Add corresponding left/right subgraphs

10 E[i, j, 0, 1]=maxiqj (E[i,q,0,1]+E[q,j,0,0]

11 E[i, j, 1, 1]=maxiqj (E[i,q,1,0]+E[q,j,1,1])

Figure 3: Eisner Algorithm

Figure 3 shows the pseudo-code of the Eisner

algorithm. A dynamic programming table

E[i,j,d,c] is used to represent the highest scored

subtree spanning ei to ej. d indicates whether ei is

the head (d=1) or ej is head (d=0). c indicates

whether the subtree will not take any more de-

pendents (c=1) or it needs to be completed (c=0).

The algorithm begins by initializing all length-

one subtrees to a score of 0.0. In the inner loop,

the first two steps (Lines 7 and 8) are to construct

the new dependency arcs by taking the maximum

over all the internal indices (iqj) in the span,

and calculating the value of merging the two sub-

trees and adding one new arc. The last two steps

(Lines 10 and 11) attempt to achieve an optimal

left/right subtree in the span by adding the corre-

sponding left/right subtree to the arcs that have

been added previously. This algorithm considers

all the possible subtrees. We can then get the

optimal dependency tree with the score

E[0,n,1,1] .

3.3 Maximum Spanning Tree Algorithm

As the bottom-up Eisner Algorithm must main-

tain the nested structural constraint, it cannot

parse the non-projective dependency trees like 8’

and 9’ in Figure 2. However, the non-projective

dependency does exist in real discourse. For ex-

ample, the earlier text mainly talks about the top-

ic A with mentioning the topic B, while the latter

text gives a supplementary explanation for the

topic B. This example can constitute a non-

projective tree and its pictorial diagram is exhib-

ited in Figure 4. Following the work of McDon-

ald (2005b), we formalize discourse dependency

parsing as searching for a maximum spanning

tree (MST) in a directed graph.

... ...
A A AB B

...

Figure 4: Pictorial Diagram of Non-projective

Trees

Chu and Liu (1965) and Edmonds (1967) in-

dependently proposed the virtually identical al-

gorithm named the Chu-Liu/Edmonds algorithm,

for finding MSTs on directed graphs (McDonald

et al. 2005b). Figure 5 shows the details of the

Chu-Liu/Edmonds algorithm for discourse pars-

ing. Each node in the graph greedily selects the

incoming arc with the highest score. If one tree

results, the algorithm ends. Otherwise, there

must exist a cycle. The algorithm contracts the

identified cycle into a single node and recalcu-

lates the scores of the arcs which go in and out of

the cycle. Next, the algorithm recursively call

itself on the contracted graph. Finally, those arcs

which go in or out of one cycle will recover

themselves to connect with the original nodes in

V. Like McDonald et al. (2005b), we adopt an

efficient implementation of the Chu-

Liu/Edmonds algorithm that is proposed by Tar-

jan (1997) with O(n
2
) time complexity.

28

Chu-Liu-Edmonds(G,)

Input: Text T=e0 e1… en; Arc scores (ei,ej)

1 A’ = {<ei, ej>| ei = argmax (ei,ej); 1j|V|}

2 G’ = (V, A’)

3 If G’ has no cycles, then return G’

4 Find an arc set AC that is a cycle in G’

5 <GC, ep> = contract(G, AC,)

6 G = (V, A)=Chu-Liu-Edmonds(GC,)

7 For the arc <ei,eC> where ep(ei,eC)=ej:

8 A=AAC{<ei,ej)}-{<ei,eC>, <a(ej),ej>}

9 For the arc <eC, ei> where ep(eC ,ei)=ej:

10 A=A{<ej,ei>}-{<eC,ei>}

11 V = V

12 Return G

Contract(G=(V,A), AC,)

1 Let GC be the subgraph of G excluding nodes in C

2 Add a node eC to GC denoting the cycle C

3 For ej V-C : eiC <ei,ej>A

4 Add arc <eC,ej> to GC with

ep(eC,ej)= (ei,ej)

5 (eC,ej) = (ep(eC,ej),ej)

6 For ei V-C: ejC (ei,ej)A

7 Add arc <ei,eC> to GC with

 ep(ei,eC)= = [(ei,ej)-(a(ei),ej)]

8 (ei,eC) =(ei,ej)-(a(ei),ej)+score(C)

9 Return <GC, ep>

Figure 5: Chu-Liu/Edmonds MST Algorithm

4 Learning

In Section 3, we assume that the arc scores are

available. In fact, the score of each arc is calcu-

lated as a linear combination of feature weights.

Thus, we need to determine the features for arc

representation first. With referring to McDonald

et al. (2005a; 2005b), we use the Margin Infused

Relaxed Algorithm (MIRA) to learn the feature

weights based on a training set of documents

annotated with dependency structures
1

,
N

i i
T

i
y

where yi denotes the correct dependency tree for

the text Ti.

4.1 Features

Following (Feng and Hirst, 2012; Lin et al., 2009;

Hernault et al., 2010b), we explore the following

6 feature types combined with relations to repre-

sent each labeled arc <ei, r, ej> .

(1) WORD: The first one word, the last one

word, and the first bigrams in each EDU, the pair

of the two first words and the pair of the two last

words in the two EDUs are extracted as features.

(2) POS: The first one and two POS tags in each

EDU, and the pair of the two first POS tags in

the two EDUs are extracted as features.

(3) Position: These features concern whether the

two EDUs are included in the same sentence, and

the positions where the two EDUs are located in

one sentence, one paragraph, or one document.

(4) Length: The length of each EDU.

(5) Syntactic: POS tags of the dominating nodes

as defined in Soricut and Marcu (2003) are ex-

tracted as features. We use the syntactic trees

from the Penn Treebank to find the dominating

nodes,.

(6) Semantic similarity: We compute the se-

mantic relatedness between the two EDUs based

on WordNet. The word pairs are extracted from

(ei, ej) and their similarity is calculated. Then, we

can get a weighted complete bipartite graph

where words are deemed as nodes and similarity

as weights. From this bipartite graph, we get the

maximum weighted matching and use the aver-

aged weight of the matches as the similarity be-

tween ei and ej. In particular, we use

path_similarity, wup_similarity, res_similarity,

jcn_similarity and lin_similarity provided by the

nltk.wordnet.similarity (Bird et. al., 2009) pack-

age for calculating word similarity.

As for relations, we experiment two sets of

relation labels from RST-DT. One is composed

of 19 coarse-grained relations and the other 111

fine-grained relations
6
.

4.2 MIRA based Learning

Margin Infused Relaxed Algorithm (MIRA) is an

online algorithm for multiclass classification and

is extended by Taskar et al. (2003) to cope with

structured classification.

MIRA Input: a training set
1

,
N

i i
T

i
y

1 w0 = 0; v = 0; j = 0

2 For iter := 1 to K

3 For i := 1 to N

4 update w according to ,iT
i

y :

1min j j w w

s.t. (,) (, ') (, ')

where ' (,)

i i i i i i

j

i i

s T s T L

DT T

y y y y

y w

5 v = v + wj ;

6 j = j+1

7 w = v/(K*N)

Figure 6: MIRA based Learning

Figure 6 gives the pseudo-code of the MIRA

algorithm (McDonld et al., 2005b). This algo-

rithm is designed to update the parameters w us-

ing a single training instance ,iT
i

y in each

iteration. On each update, MIRA attempts to

keep the norm of the change to the weight vector

6 19 relations include the original 18 relation in RST-DT

plus one artificial ROOT relation. The 111 relations also

include the ROOT relation.

29

as small as possible, which is subject to con-

structing the correct dependency tree under con-

sideration with a margin at least as large as the

loss of the incorrect dependency trees. We define

the loss of a discourse dependency tree '
i

y (de-

noted by (, ')i iL y y) as the number of the EDUs

that have incorrect heads. Since there are expo-

nentially many possible incorrect dependency

trees and thus exponentially many margin con-

straints, here we relax the optimization and stay

with a single best dependency tree

' (,)j

i iDT Ty w which is parsed under the weight

vector w
j
. In this algorithm, the successive up-

dated values of w are accumulated and averaged

to avoid overfitting.

5 Experiments

5.1 Preparation

We test our methods experimentally using the

discourse dependency treebank which is built as

in Section 2. The training part of the corpus is

composed of 342 documents and contains 18,765

EDUs, while the test part consists of 38 docu-

ments and 2,346 EDUs. The number of EDUs in

each document ranges between 2 and 304. Two

sets of relations are adopted. One is composed of

19 relations and Table 1 shows the number of

each relation in the training and test corpus. The

other is composed of 111 relations. Due to space

limitation, Table 2 only lists the 10 highest-

distributed relations with regard to their frequen-

cy in the training corpus.

The following experiments are conducted: (1)

to measure the parsing performance with differ-

ent relation sets and different feature types; (2) to

compare our parsing methods with the state-of-

the-art discourse parsing methods.

Relations Train Test Relations Train Test
Elaboration 6879 796 Temporal 426 73

Attribution 2641 343 ROOT 342 38

Joint 1711 212 Compari. 273 29

Same-unit 1230 127 Condition 258 48

Contrast 944 146 Manner. 191 27

Explanation 849 110 Summary 188 32

Background 786 111 Topic-Cha. 187 13

Cause 785 82 Textual 147 9

Evaluation 502 80 TopicCom. 126 24

Enablement 500 46 Total 18765 2346

Table 1: Coarse-grained Relation Distribution

Relations Train Test

Elaboration-additional 2912 312

Attribution 2474 329

Elaboration-object-attribute-e 2274 250

List 1690 206

Same-unit 1230 127

Elaboration-additional-e 747 69

Circumstance 545 80

Explanation-argumentative 524 70

Purpose 430 43

Contrast 358 64

Table 2: 10 Highest Distributed Fine-grained

Relations

5.2 Feature Influence on Two Relation Sets

So far, researches on discourse parsing avoid

adopting too fine-grained relations and the rela-

tion sets containing around 20 labels are widely

used. In our experiments, we observe that adopt-

ing a fine-grained relation set can even be helpful

to building the discourse trees. Here, we conduct

experiments on two relation sets that contain 19

and 111 labels respectively. At the same time,

different feature types are tested their effects on

discourse parsing.

Method Features Unlabeled
Acc.

Labeled
Acc.

Eisner 1+2 0.3602 0.2651
1+2+3 0.7310 0.4855
1+2+3+4 0.7370 0.4868
1+2+3+4+5 0.7447 0.4957
1+2+3+4+5+6 0.7455 0.4983

MST 1+2 0.1957 0.1479
1+2+3 0.7246 0.4783
1+2+3+4 0.7280 0.4795
1+2+3+4+5 0.7340 0.4915
1+2+3+4+5+6 0.7331 0.4851

Table 3: Performance Using Coarse-grained Re-

lations.

Method Feature types Unlabeled
Acc.

Labeled
Acc.

Eisner 1+2 0.3743 0.2421
1+2+3 0.7451 0.4079
1+2+3+4 0.7472 0.4041
1+2+3+4+5 0.7506 0.4254
1+2+3+4+5+6 0.7485 0.4288

MST 1+2 0.2080 0.1300
1+2+3 0.7366 0.4054
1+2+3+4 0.7468 0.4071
1+2+3+4+5 0.7494 0.4288
1+2+3+4+5+6 0.7460 0.4309

Table 4: Performance Using Fine-grained Rela-

tions.

Based on the MIRA leaning algorithm, the

Eisner algorithm and MST algorithm are used to

parse the test documents respectively. Referring

to the evaluation of syntactic dependency parsing,

30

we use unlabeled accuracy to calculate the ratio

of EDUs that correctly identify their heads, la-

beled accuracy the ratio of EDUs that have both

correct heads and correct relations. Table 3 and

Table 4 show the performance on two relation

sets. The numbers (1-6) represent the corre-

sponding feature types described in Section 4.1.

From Table 3 and Table 4, we can see that the

addition of more feature types, except the 6
th
 fea-

ture type (semantic similarity), can promote the

performance of relation labeling, whether using

the coarse-grained 19 relations and the fine-

grained 111 relations. As expected, the first and

second types of features (WORD and POS) are

the ones which play an important role in building

and labeling the discourse dependency trees.

These two types of features attain similar per-

formance on two relation sets. The Eisner algo-

rithm can achieve unlabeled accuracy around

0.36 and labeled accuracy around 0.26, while

MST algorithm achieves unlabeled accuracy

around 0.20 and labeled accuracy around 0.14.

The third feature type (Position) is also very

helpful to discourse parsing. With the addition of

this feature type, both unlabeled accuracy and

labeled accuracy exhibit a marked increase. Es-

pecially, when applying MST algorithm on dis-

course parsing, unlabeled accuracy rises from

around 0.20 to around 0.73. This result is con-

sistent with Hernault’s work (2010b) whose ex-

periments have exhibited the usefulness of those

position-related features. The other two types of

features which are related to length and syntactic

parsing, only promote the performance slightly.

As we employed the MIRA learning algorithm,

it is possible to identify which specific features

are useful, by looking at the weights learned to

each feature using the training data. Table 5 se-

lects 10 features with the highest weights in ab-

solute value for the parser which uses the coarse-

grained relations, while Table 6 selects the top

10 features for the parser using the fine-grained

relations. Each row denotes one feature: the left

part before the symbol “&” is from one of the 6

feature types and the right part denotes a specific

relation. From Table 5 and Table 6, we can see

that some features are reasonable. For example,

The sixth feature in Table 5 represents that the

dependency relation is preferred to be labeled

Explanation with the fact that “because” is the

first word of the dependent EDU. From these

two tables, we also observe that most of the

heavily weighted features are usually related to

those highly distributed relations. When using

the coarse-grained relations, the popular relations

(eg. Elaboration, Attribution and Joint) are al-

ways preferred to be labeled. When using the

fine-grained relations, the large relations includ-

ing List and Elaboration-object-attribute-e are

given the precedence of labeling. This phenome-

non is mainly caused by the sparseness of the

training corpus and the imbalance of relations.

To solve this problem, the augment of training

corpus is necessary.

 Feature description Weight

1
Last two words in dependent EDU are
“appeals court” & Joint

0.475

2
First word in dependent EDU is “racked”
& Elaboration

0.445

3
First two words in head EDU are “I ‘d”
& Attribution

0.324

4
Last word in dependent EDU is “in”
& Elaboration

-0.323

5
The res_similarity between two EDUs is 0
& Elaboration

0.322

6
First word in dependent EDU is “because”
& Explanation

0.306

7 First POS in head EDU is “DT” & Joint -0.299

8
First two words in dependent EDU are “that
required” & Elaboration

0.287

9
First two words in dependent EDU are “that
the” & Elaboration

0.277

10
First word in dependent EDU is “because”
& Cause

0.265

Table 5: Top 10 Feature Weights for Coarse-

grained Relation Labeling (Eisner Algorithm)

 Features Weight

1 Last two words in dependent EDU are “ap-
peals court” & List

0.576

2 First two words in head EDU are “I ‘d”
& Attribution

0.385

3 First two words in dependent EDU is “that
the” & Elaboration-object-attribute-e

0.348

4 First POS in head EDU is “DT” & List -0.323
5 Last word in dependent EDU is “in” & List -0.286
6 First word in dependent EDU is “racked” &

Elaboration-object-attribute-e
0.445

7 First two word pairs are <”In an”,”But
even”> & List

-0.252

8 Dependent EDU has a dominating node
tagged “CD”& Elaboration-object-attribute-e

-0.244

9 First two words in dependent EDU are “pa-
tents disputes” & Purpose

0.231

10 First word in dependent EDU is “to”
& Purpose

0.230

Table 6: Top 10 Feature Weights for Coarse-

grained Relation Labeling (Eisner Algorithm)

Unlike previous discourse parsing approaches,

our methods combine tree building and relation

labeling into a uniform framework naturally.

This means that relations play a role in building

the dependency tree structure. From Table 3 and

Table 4, we can see that fine-grained relations

are more helpful to building unlabeled discourse

31

trees more than the coarse-grained relations. The

best result of unlabeled accuracy using 111 rela-

tions is 0.7506, better than the best performance

(0.7447) using 19 relations. We can also see that

the labeled accuracy using the fine-grained rela-

tions can achieve 0.4309, only 0.06 lower than

the best labeled accuracy (0.4915) using the

coarse-grained relations.

In addition, comparing the MST algorithm

with the Eisner algorithm, Table 3 and Table 4

show that their performances are not significant-

ly different from each other. But we think that

MST algorithm has more potential in discourse

dependency parsing, because our converted dis-

course dependency treebank contains only pro-

jective trees and somewhat suppresses the MST

algorithm to exhibit its advantage of parsing non-

projective trees. In fact, we observe that some

non-projective dependencies produced by the

MST algorithm are even reasonable than what

they are in the dependency treebank. Thus, it is

important to build a manually labeled discourse

dependency treebank, which will be our future

work.

5.3 Comparison with Other Systems

The state-of-the-art discourse parsing methods

normally produce the constituency based dis-

course trees. To comprehensively evaluate the

performance of a labeled constituency tree, the

blank tree structure (‘S’), the tree structure with

nuclearity indication (‘N’), and the tree structure

with rhetorical relation indication but no nuclear-

ity indication (‘R’) are evaluated respectively

using the F measure (Marcu 2000).

To compare our discourse parsers with others,

we adopt MIRA and Eisner algorithm to conduct

discourse parsing with all the 6 types of features

and then convert the produced projective de-

pendency trees to constituency based trees

through their correspondence as stated in Section

2. Our parsers using two relation sets are named

Our-coarse and Our-fine respectively. The in-

putted EDUs of our parsers are from the standard

segmentation of RST-DT. Other text-level dis-

course parsing methods include: (1) Percep-

coarse: we replace MIRA with the averaged per-

ceptron learning algorithm and the other settings

are the same with Our-coarse; (2) HILDA-

manual and HILDA-seg are from Hernault

(2010b)’s work, and their inputted EDUs are

from RST-DT and their own EDU segmenter

respectively; (3) LeThanh indicates the results

given by LeThanh el al. (2004), which built a

multi-level rule based parser and used 14 rela-

tions evaluated on 21 documents from RST-DT;

(4) Marcu denotes the results given by Mar-

cu(2000)’s decision-tree based parser which used

15 relations evaluated on unspecified documents.

Table 7 shows the performance comparison

for all the parsers mentioned above. Human de-

notes the manual agreement between two human

annotators. From this table, we can see that both

our parsers perform better than all the other

parsers as a whole, though our parsers are not

developed directly for constituency based trees.

Our parsers do not exhibit obvious advantage

than HILDA-manual on labeling the blank tree

structure, because our parsers and HILDA-

manual all perform over 94% of Human and this

performance level somewhat reaches a bottle-

neck to promote more. However, our parsers

outperform the other parsers on both nuclearity

and relation labeling. Our-coarse achieves 94.2%

and 91.8% of the human F-scores, on labeling

nuclearity and relation respectively, while Our-

fine achieves 95.2% and 87.6%. We can also see

that the averaged perceptron learning algorithm,

though simple, can achieve a comparable per-

formance, better than HILDA-manual. The

parsers HILDA-seg, LeThanh and Marcu use

their own automatic EDU segmenters and exhibit

a relatively low performance. This means that

EDU segmentation is important to a practical

discourse parser and worth further investigation.

 S N R
Our-coarse 82.9 73.0 60.6
Our-fine 83.4 73.8 57.8
Percep-coarse 82.3 72.6 59.4
HILDA-manual 83.0 68.4 55.3
HILDA-seg 72.3 59.1 47.8
LeThanh 53.7 47.1 39.9
Marcu 44.8 30.9 18.8
Human 88.1 77.5 66.0

Table 7: Full Parser Evaluation

 MAFS WAFS Acc
Our-coarse 0.454 0.643 66.84
Percep-coarse 0.438 0.633 65.37
Feng 0.440 0.607 65.30
HILDA-manual 0.428 0.604 64.18
Baseline - - 35.82

Table 8: Relation Labeling Performance

To further compare the performance of rela-

tion labeling, we follow Hernault el al. (2010a)

and use Macro-averaged F-score (MAFS) to

evaluate each relation. Due to space limitation,

we do not list the F scores for each relation.

Macro-averaged F-score is not influenced by the

number of instances that are contained in each

32

relation. Weight-averaged F-score (WAFS)

weights the performance of each relation by the

number of its existing instances. Table 8 com-

pares our parser Our-coarse with other parsers

HILDA-manual, Feng (Feng and Hirst, 2012)

and Baseline. Feng (Feng and Hirst, 2012) can

be seen as a strengthened version of HILDA

which adopts more features and conducts feature

selection. Baseline always picks the most fre-

quent relation (i.e. Elaboration). From the results,

we find that Our-coarse consistently provides

superior performance for most relations over

other parsers, and therefore results in higher

MAFS and WAFS.

6 Related Work

So far, the existing discourse parsing techniques

are mainly based on two well-known treebanks.

One is the Penn Discourse TreeBank (PDTB)

(Prasad et al., 2007) and the other is RST-DT.

PDTB adopts the predicate-arguments repre-

sentation by taking an implicit/explicit connec-

tive as a predication of two adjacent sentences

(arguments). Then the discourse relation between

each pair of sentences is annotated independently

to characterize its predication. A majority of re-

searches regard discourse parsing as a classifica-

tion task and mainly focus on exploiting various

linguistic features and classifiers when using

PDTB (Wellner et al., 2006; Pitler et al., 2009;

Wang et al., 2010). However, the predicate-

arguments annotation scheme itself has such a

limitation that one can only obtain the local dis-

course relations without knowing the rich context.

In contrast, RST and its treebank enable peo-

ple to derive a complete representation of the

whole discourse. Researches have begun to in-

vestigate how to construct a RST tree for the

given text. Since the RST tree is similar to the

constituency based syntactic tree except that the

constituent nodes are different, the syntactic

parsing techniques have been borrowed for dis-

course parsing (Soricut and Marcu, 2003;

Baldridge and Lascarides, 2005; Sagae, 2009;

Hernault et al., 2010b; Feng and Hirst, 2012).

Soricut and Marcu (2003) use a standard bottom-

up chart parsing algorithm to determine the dis-

course structure of sentences. Baldridge and Las-

carides (2005) model the process of discourse

parsing with the probabilistic head driven parsing

techniques. Sagae (2009) apply a transition based

constituent parsing approach to construct a RST

tree for a document. Hernault et al. (2010b) de-

velop a greedy bottom-up tree building strategy

for discourse parsing. The two adjacent text

spans with the closest relations are combined in

each iteration. As the extension of Hernault’s

work, Feng and Hirst (2012) further explore var-

ious features aiming to achieve better perfor-

mance. However, as analyzed in Section 1, there

exist three limitations with the constituency

based discourse representation and parsing. We

innovatively adopt the dependency structure,

which can be benefited from the existing RST-

DT, to represent the discourse. To the best of our

knowledge, this work is the first to apply de-

pendency structure and dependency parsing

techniques in discourse analysis.

7 Conclusions

In this paper, we present the benefits and feasi-

bility of applying dependency structure in text-

level discourse parsing. Through the correspond-

ence between constituency-based trees and de-

pendency trees, we build a discourse dependency

treebank by converting the existing RST-DT.

Based on dependency structure, we are able to

directly analyze the relations between the EDUs

without worrying about the additional interior

text spans, and apply the existing state-of-the-art

dependency parsing techniques which have a

relatively low time complexity. In our work, we

use the graph based dependency parsing tech-

niques learned from the annotated dependency

trees. The Eisner algorithm and the MST algo-

rithm are applied to parse the optimal projective

and non-projective dependency trees respectively

based on the arc-factored model. To calculate the

score for each arc, six types of features are ex-

plored to represent the arcs and the feature

weights are learned based on the MIRA learning

technique. Experimental results exhibit the effec-

tiveness of the proposed approaches. In the fu-

ture, we will focus on non-projective discourse

dependency parsing and explore more effective

features.

Acknowledgments

This work was partially supported by National

High Technology Research and Development

Program of China (No. 2012AA011101), Na-

tional Key Basic Research Program of China (No.

2014CB340504), National Natural Science

Foundation of China (No. 61273278), and Na-

tional Key Technology R&D Program (No:

2011BAH10B04-03). We also thank the three

anonymous reviewers for their helpful comments.

33

References

Jason Baldridge and Alex Lascarides. 2005. Probabil-

istic Head-driven Parsing for Discourse Structure.

In Proceedings of the Ninth Conference on Com-

putational Natural Language Learning, pages 96–

103.

Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural Language Processing with Python — Ana-

lyzing Text with the Natural Language Toolkit.

O’Reilly.

Lynn Carlson, Daniel Marcu, and Mary E. Okurowski.

2001. Building a Discourse-tagged Corpus in the

Framework of Rhetorical Structure Theory. Pro-

ceedings of the Second SIGdial Workshop on Dis-

course and Dialogue-Volume 16, pages 1–10.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the

Shortest Arborescence of a Directed Graph, Sci-

ence Sinica, v.14, pp.1396-1400.

Koby Crammer and Yoram Singer. 2003. Ultracon-

servative Online Algorithms for Multiclass Prob-

lems. JMLR.

Jack Edmonds. 1967. Optimum Branchings, J. Re-

search of the National Bureau of Standards, 71B,

pp.233-240.

Jason Eisner. 1996. Three New Probabilistic Models

for Dependency Parsing: An Exploration. In Proc.

COLING.

Vanessa Wei Feng and Graeme Hirst. Text-level Dis-

course Parsing with Rich Linguistic Features, Pro-

ceedings of the 50th Annual Meeting of the

Association for Computational Linguistics, pages

60–68, Jeju, Republic of Korea, 8-14 July 2012.

Hugo Hernault, Danushka Bollegala, and Mitsuru

Ishizuka. 2010a. A Semi-supervised Approach to

Improve Classification of Infrequent Discourse Re-

lations Using Feature Vector Extension. In Pro-

ceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages

399–409, Cambridge, MA, October. Association

for Computational Linguistics.

Hugo Hernault, Helmut Prendinger, David A. duVerle,

and Mitsuru Ishizuka. 2010b. HILDA: A Discourse

Parser Using Support Vector Machine Classifica-

tion. Dialogue and Discourse, 1(3):1–33.

Shafiq Joty, Giuseppe Carenini and Raymond T. Ng.

A Novel Discriminative Framework for Sentence-

level Discourse Analysis. EMNLP-CoNLL '12

Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing

and Computational Natural Language Learning

Stroudsburg, PA, USA.

Huong LeThanh, Geetha Abeysinghe, and Christian

Huyck. 2004. Generating Discourse Structures for

Written Texts. In Proceedings of the 20th Interna-

tional Conference on Computational Linguistics,

pages 329– 335.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.

Recognizing Implicit Discourse Relations in the

Penn Discourse Treebank. In Proceedings of the

2009 Conference on Empirical Method in Natural

Language Processing, Vol. 1, EMNLP’09, pages

343-351.

William Mann and Sandra Thompson. 1988. Rhetori-

cal Structure Theory: Toward a Functional Theory

of Text Organization. Text, 8(3):243–281.

Daniel Marcu. 2000. The Theory and Practice of Dis-

course Parsing and Summarization. MIT Press,

Cambridge, MA, USA.

Ryan McDonald, Koby Crammer, and Fernando Pe-

reira. 2005a. Online Large-Margin Training of De-

pendency Parsers, 43rd Annual Meeting of the

Association for Computational Linguistics (ACL

2005) .

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and

Jan Hajic. 2005b. Non-projective Dependency

Parsing using Spanning Tree Algorithms, Proceed-

ings of HLT/EMNLP 2005.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.

Automatic Sense Prediction for Implicit Discourse

Relations in Text, In Proc. of the 47th ACL. pages

683-691.

Rashmi Prasad, Eleni Miltsakaki, Nikhil Dinesh, Alan

Lee, Aravind Joshi, Livio Robaldo, and Bonnie

Webber. 2007. The Penn Discourse Treebank 2.0

Annotation Manual. The PDTB Research Group,

December.

David Reitter. 2003. Simple Signals for Complex

Rhetorics: On Rhetorical Analysis with Rich-

feature Support Vector Models. LDV Forum,

18(1/2):38–52.

Kenji Sagae. 2009. Analysis of discourse structure

with syntactic dependencies and data-driven shift-

reduce parsing. In Proceedings of the 11th Interna-

tional Conference on Parsing Technologies, pages

81-84.

Radu Soricut and Daniel Marcu. 2003. Sentence level

discourse parsing using syntactic and lexical in-

formation. In Proceedings of the 2003 Conference

34

of the North American Chapter of the Association

for Computational Linguistics on Human Lan-

guage Technology, Volume 1, pages 149–156.

Rajen Subba and Barbara Di Eugenio. 2009. An effec-

tive discourse parser that uses rich linguistic in-

formation. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for

Computational Linguistics, pages 566–574.

Robert Endre Tarjan, 1977. Finding Optimum

Branchings, Networks, v.7, pp.25-35.

Ben Taskar, Carlos Guestrin and Daphne Koller. 2003.

Max-margin Markov Networks. In Proc. NIPS.

Bonnie Webber. 2004. D-LTAG: Extending Lexical-

ized TAG to Discourse. Cognitive Science,

28(5):751–779.

Wen Ting Wang, Jian Su and Chew Lim Tan. 2010.

Kernel based Discourse Relation Recognition with

Temporal Ordering Information, In Proc. of

ACL’10. pages 710-719.

Ben Wellner, James Pustejovsky, Catherine Havasi,

Anna Rumshisky and Roser Sauri. 2006. Classifi-

cation of Discourse Coherence Relations: an Ex-

ploratory Study Using Multiple Knowledge

Sources. In Proc.of the 7th SIGDIAL Workshop on

Discourse and Dialogue. pages 117-125.

35

