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Abstract 

Previous researches on Text-level discourse 

parsing mainly made use of constituency 

structure to parse the whole document into 

one discourse tree. In this paper, we present 

the limitations of constituency based dis-

course parsing and first propose to use de-

pendency structure to directly represent the 

relations between elementary discourse 

units (EDUs). The state-of-the-art depend-

ency parsing techniques, the Eisner algo-

rithm and maximum spanning tree (MST) 

algorithm, are adopted to parse an optimal 

discourse dependency tree based on the arc-

factored model and the large-margin learn-

ing techniques. Experiments show that our 

discourse dependency parsers achieve a 

competitive performance on text-level dis-

course parsing.  

1 Introduction 

It is widely agreed that no units of the text can be 

understood in isolation, but in relation to their 

context. Researches in discourse parsing aim to 

acquire such relations in text, which is funda-

mental to many natural language processing ap-

plications such as question answering, automatic 

summarization and so on. 

One important issue behind discourse parsing 

is the representation of discourse structure. Rhe-

torical Structure Theory (RST) (Mann and 

Thompson, 1988), one of the most influential 

discourse theories, posits a hierarchical genera-

tive tree representation, as illustrated in Figure 1. 

The leaves of a tree correspond to contiguous 

text spans called Elementary Discourse Units 

(EDUs)
1
. The adjacent EDUs are combined into 

                                                           
1 EDU segmentation is a relatively trivial step in discourse 

parsing. Since our work focus here is not EDU segmenta-

tion but discourse parsing. We assume EDUs are already 

known. 

the larger text spans by rhetorical relations (e.g., 

Contrast and Elaboration) and the larger text 

spans continue to be combined until the whole 

text constitutes a parse tree. The text spans 

linked by rhetorical relations are annotated as 

either nucleus or satellite depending on how sali-

ent they are for interpretation. It is attractive and 

challenging to parse the whole text into one tree.  

Since such a hierarchical discourse tree is 

analogous to a constituency based syntactic tree 

except that the constituents in the discourse trees 

are text spans, previous researches have explored 

different constituency based syntactic parsing 

techniques (eg. CKY and chart parsing) and var-

ious features (eg. length, position et al.) for dis-

course parsing (Soricut and Marcu, 2003; Joty et 

al., 2012; Reitter, 2003; LeThanh et al., 2004; 

Baldridge and Lascarides, 2005; Subba and Di 

Eugenio, 2009; Sagae, 2009; Hernault et al., 

2010b; Feng and Hirst, 2012). However, the ex-

isting approaches suffer from at least one of the 

following three problems. First, it is difficult to 

design a set of production rules as in syntactic 

parsing, since there are no determinate genera-

tive rules for the interior text spans. Second, the 

different levels of discourse units (e.g. EDUs or 

larger text spans) occurring in the generative 

process are better represented with different fea-

tures, and thus a uniform framework for dis-

course analysis is hard to develop. Third, to 

reduce the time complexity of the state-of-the-art 

constituency based parsing techniques, the ap-

proximate parsing approaches are prone to trap 

in local maximum. 

In this paper, we propose to adopt the depend-

ency structure in discourse representation to 

overcome the limitations mentioned above. Here 

is the basic idea: the discourse structure consists 

of EDUs which are linked by the binary, asym-

metrical relations called dependency relations. A 

dependency relation holds between a subordinate 

EDU called the dependent, and another EDU on 
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which it depends called the head, as illustrated in 

Figure 2. Each EDU has one head. So, the de-

pendency structure can be seen as a set of head-

dependent links, which are labeled by functional 

relations. Now, we can analyze the relations be-

tween EDUs directly, without worrying about 

any interior text spans. Since dependency trees 

contain much fewer nodes and on average they 

are simpler than constituency based trees, the 

current dependency parsers can have a relatively 

low computational complexity. Moreover, con-

cerning linearization, it is well known that de-

pendency structures can deal with non-projective 

relations, while constituency-based models need 

the addition of complex mechanisms like trans-

formations, movements and so on. In our work, 

we adopt the graph based dependency parsing 

techniques learned from large sets of annotated 

dependency trees. The Eisner (1996) algorithm 

and maximum spanning tree (MST) algorithm 

are used respectively to parse the optimal projec-

tive and non-projective dependency trees with 

the large-margin learning technique (Crammer 

and Singer, 2003). To the best of our knowledge, 

we are the first to apply the dependency structure 

and introduce the dependency parsing techniques 

into discourse analysis.  

The rest of this paper is organized as follows. 

Section 2 formally defines discourse dependency 

structure and introduces how to build a discourse 

dependency treebank from the existing RST cor-

pus. Section 3 presents the discourse parsing ap-

proach based on the Eisner and MST algorithms. 

Section 4 elaborates on the large-margin learning 

technique as well as the features we use. Section 

5 discusses the experimental results. Section 6 

introduces the related work and Section 7 con-

cludes the paper. 
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Figure 1: Headed Constituency based Discourse Tree Structure (e1,e2 and e3 denote three EDUs, 

and * denotes the NUCLEUS constituent) 
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Figure 2: Discourse Dependency Tree Structures (e1,e2 and e3 denote three EDUS, and the directed 

arcs  denote one dependency relations. The artificial e0 is also displayed here. ) 

2 Discourse Dependency Structure and 

Tree Bank 

2.1 Discourse Dependency Structure 

Similar to the syntactic dependency structure 

defined by McDonald (2005a, 2005b), we insert 

an artificial EDU e0 in the beginning for each 

document and label the dependency relation link-

ing from e0 as ROOT. This treatment will sim-

plify both formal definitions and computational 

implementations. Normally, we assume that each 

EDU should have one and only one head except 

for e0. A labeled directed arc is used to represent 

the dependency relation from one head to its de-

pendent. Then, discourse dependency structure 

can be formalized as the labeled directed graph, 

where nodes correspond to EDUs and labeled 

arcs correspond to labeled dependency relations. 
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We assume that the text
2
 T is composed of 

n+1 EDUs including the artificial e0. That is 

T=e0 e1 e2 … en. Let R={r1,r2, … ,rm} denote a 

finite set of functional relations that hold be-

tween two EDUs. Then a discourse dependency 

graph can be denoted by G=<V, A> where V de-

notes a set of nodes and A denotes a set of la-

beled directed arcs, such that for the text T=e0 e1 

e2 … en and the label set R the following holds: 

(1) V = { e0, e1, e2, … en } 
(2) A  V R  V, where <ei, r, ej>A represents 

an arc from the head ei to the dependent ej 
labeled with the relation r. 

(3) If <ei, r, ej>A then <ek, r’, ej>A for all ki  

(4) If <ei, r, ej>A then <ei, r’, ej>A for all r’r 
The third condition assures that each EDU has 

one and only one head and the fourth tells that 

only one kind of dependency relation holds be-

tween two EDUs. According to the definition, 

we illustrate all the 9 possible unlabeled depend-

ency trees for a text containing three EDUs in 

Figure 2. The dependency trees 1’ to 7’ are pro-

jective while 8’ and 9’ are non-projective with 

crossing arcs. 

2.2 Our Discourse Dependency Treebank  

To automatically conduct discourse dependency 

parsing, constructing a discourse dependency 

treebank is fundamental. It is costly to manually 

construct such a treebank from scratch. Fortu-

nately, RST Discourse Treebank (RST-DT) 

(Carlson et al., 2001) is an available resource to 

help with.  

A RST tree constitutes a hierarchical structure 

for one document through rhetorical relations. A 

total of 110 fine-grained relations (e.g. Elabora-

tion-part-whole and List) were used for tagging 

RST-DT. They can be categorized into 18 classes 

(e.g. Elaboration and Joint). All these relations 

can be hypotactic (“mononuclear”) or paratactic 

(“multi-nuclear”). A hypotactic relation holds 

between a nucleus span and an adjacent satellite 

span, while a paratactic relation connects two or 

more equally important adjacent nucleus spans. 

For convenience of computation, we convert the 

n-ary (n>2) RST trees
3
 to binary trees through 

adding a new node for the latter n-1 nodes and 

assume each relation is connected to only one 

nucleus
4
. This departure from the original theory 

                                                           
2 The two terms “text” and “document” are used inter-

changeably and represent the same meaning. 
3 According to our statistics, there are totally 381 n-ary rela-

tions in RST-DT.  
4 We set the first nucleus as the only nucleus. 

is not such a major step as it may appear, since 

any nucleus is known to contribute to the essen-

tial meaning. Now, each RST tree can be seen as 

a headed constituency based binary tree where 

the nuclei are heads and the children of each 

node are linearly ordered. Given three EDUs
5
, 

Figure 1 shows the possible 8 headed constituen-

cy based trees where the superscript * denotes 

the heads (nuclei). We use dependency trees to 

simulate the headed constituency based trees.  

Contrasting Figure 1 with Figure 2, we use 

dependency tree 1’ to simulate binary trees 1 and 

8, and dependency tress 2’- 7’ to simulate binary 

trees 2-7 correspondingly. The rhetorical rela-

tions in RST trees are kept as the functional rela-

tions which link the two EDUs in dependency 

trees. With this kind of conversion, we can get 

our discourse dependency treebank. It is worth 

noting that the non-projective trees like 8’ and 9’ 

do not exist in our dependency treebank, though 

they are eligible according to the definition of 

discourse dependency graph.  

3 Discourse Dependency Parsing 

3.1 System Overview 

As stated above, T=e0 e1 …en represents an input 

text (document) where ei denotes the i
th
 EDU of 

T. We use V to denote all the EDU nodes and 

VRV-0 (V-0 =V-{e0}) denote all the possible 

discourse dependency arcs. The goal of discourse 

dependency parsing is to parse an optimal span-

ning tree from VRV-0. Here we follow the arc 

factored method and define the score of a de-

pendency tree as the sum of the scores of all the 

arcs in the tree. Thus, the optimal dependency 

tree for T is a spanning tree with the highest 

score and obtained through the function DT(T,w): 
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where GT means a possible spanning tree with 

( , )Tscore T G  and (       ) denotes the score of 

the arc <ei, r, ej> which is calculated according to 

its feature representation f(ei,r,ej) and a weight 

vector w. 

Next, two basic problems need to be solved: 

how to find the dependency tree with the highest 

                                                           
5 We can easily get all possible headed binary trees for one 

more complex text containing more than three EDUs, by 

extending the 8 possible situations for three EDUs.  
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score for T given all the arc scores (i.e. a parsing 

problem), and how to learn and compute the 

scores of arcs according to a set of arc features 

(i.e. a learning problem).  

The following of this section addresses the 

first problem. Given the text T, we first reduce 

the multi-digraph composed of all possible arcs 

to the digraph. The digraph keeps only one arc 

<ei, r, ej> between two nodes which satisfies 

(       )                  . Thus, we can 

proceed with a reduction from labeled parsing to 

unlabeled parsing. Next, two algorithms, i.e. the 

Eisner algorithm and MST algorithm, are pre-

sented to parse the projective and non-projective 

unlabeled dependency trees respectively. 

3.2 Eisner Algorithm 

It is well known that projective dependency pars-

ing can be handled with the Eisner algorithm 

(1996) which is based on the bottom-up dynamic 

programming techniques with the time complexi-

ty of O(n
3
). The basic idea of the Eisner algo-

rithm is to parse the left and right dependents of 

an EDU independently and combine them at a 

later stage. This reduces the overhead of index-

ing heads. Only two binary variables, i.e. c and d, 

are required to specify whether the heads occur 

leftmost or rightmost and whether an item is 

complete. 

 

Eisner(T,  ) 

Input: Text T=e0 e1… en; Arc scores (ei,ej) 

1   Instantiate E[i, i, d, c]=0.0 for all i, d, c 

2   For m := 1 to n 

3       For i := 1 to n 

4          j = i + m 

5          if j> n then break;  

6          # Create subgraphs with c=0 by adding arcs 

7         E[i, j, 0, 0]=maxiqj (E[i,q,1,1]+E[q+1,j,0,1]+(ej,ei)) 

8         E[i, j, 1, 0]=maxiqj (E[i,q,1,1]+E[q+1,j,0,1]+(ei,ej)) 

9          # Add corresponding left/right subgraphs 

10        E[i, j, 0, 1]=maxiqj (E[i,q,0,1]+E[q,j,0,0] 

11        E[i, j, 1, 1]=maxiqj (E[i,q,1,0]+E[q,j,1,1]) 

Figure 3: Eisner Algorithm 

Figure 3 shows the pseudo-code of the Eisner 

algorithm. A dynamic programming table 

E[i,j,d,c] is used to represent the highest scored 

subtree spanning ei to ej. d indicates whether ei is 

the head (d=1) or ej is head (d=0). c indicates 

whether the subtree will not take any more de-

pendents (c=1) or it needs to be completed (c=0). 

The algorithm begins by initializing all length-

one subtrees to a score of 0.0. In the inner loop, 

the first two steps (Lines 7 and 8) are to construct 

the new dependency arcs by taking the maximum 

over all the internal indices (iqj) in the span, 

and calculating the value of merging the two sub-

trees and adding one new arc. The last two steps 

(Lines 10 and 11) attempt to achieve an optimal 

left/right subtree in the span by adding the corre-

sponding left/right subtree to the arcs that have 

been added previously. This algorithm considers 

all the possible subtrees. We can then get the 

optimal dependency tree with the score 

E[0,n,1,1] . 

3.3 Maximum Spanning Tree Algorithm  

As the bottom-up Eisner Algorithm must main-

tain the nested structural constraint, it cannot 

parse the non-projective dependency trees like 8’ 

and 9’ in Figure 2. However, the non-projective 

dependency does exist in real discourse. For ex-

ample, the earlier text mainly talks about the top-

ic A with mentioning the topic B, while the latter 

text gives a supplementary explanation for the 

topic B. This example can constitute a non-

projective tree and its pictorial diagram is exhib-

ited in Figure 4. Following the work of McDon-

ald (2005b), we formalize discourse dependency 

parsing as searching for a maximum spanning 

tree (MST) in a directed graph. 

... ...
A A AB B

...

 
Figure 4: Pictorial Diagram of Non-projective 

Trees 

Chu and Liu (1965) and Edmonds (1967) in-

dependently proposed the virtually identical al-

gorithm named the Chu-Liu/Edmonds algorithm, 

for finding MSTs on directed graphs (McDonald 

et al. 2005b). Figure 5 shows the details of the 

Chu-Liu/Edmonds algorithm for discourse pars-

ing. Each node in the graph greedily selects the 

incoming arc with the highest score. If one tree 

results, the algorithm ends. Otherwise, there 

must exist a cycle. The algorithm contracts the 

identified cycle into a single node and recalcu-

lates the scores of the arcs which go in and out of 

the cycle. Next, the algorithm recursively call 

itself on the contracted graph. Finally, those arcs 

which go in or out of one cycle will recover 

themselves to connect with the original nodes in 

V. Like McDonald et al. (2005b), we adopt an 

efficient implementation of the Chu-

Liu/Edmonds algorithm that is proposed by Tar-

jan (1997) with O(n
2
) time complexity. 
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Chu-Liu-Edmonds(G, ) 

Input: Text T=e0 e1… en; Arc scores (ei,ej) 

1      A’ = {<ei, ej>| ei = argmax (ei,ej); 1j|V|} 

2      G’ = (V, A’) 

3      If G’ has no cycles, then return G’  

4      Find an arc set AC that is a cycle in G’ 

5      <GC, ep> = contract(G, AC, ) 

6      G = (V, A)=Chu-Liu-Edmonds(GC, ) 

7      For the arc <ei,eC> where ep(ei,eC)=ej: 

8              A=AAC{<ei,ej)}-{<ei,eC>, <a(ej),ej>} 

9      For the arc <eC, ei> where ep(eC ,ei)=ej:  

10            A=A{<ej,ei>}-{<eC,ei>} 

11    V = V 

12    Return G 

Contract(G=(V,A), AC, ) 

1   Let GC be the subgraph of G excluding nodes in C 

2   Add a node eC to GC denoting the cycle C 

3   For ej V-C : eiC <ei,ej>A 

4        Add arc <eC,ej> to GC with  

ep(eC,ej)=          (ei,ej) 

5        (eC,ej) = (ep(eC,ej),ej) 

6    For ei V-C: ejC   (ei,ej)A 

7         Add arc <ei,eC> to GC with 

                  ep(ei,eC)= =           [(ei,ej)-(a(ei),ej)] 

8         (ei,eC) =(ei,ej)-(a(ei),ej)+score(C) 

9   Return <GC, ep> 

Figure 5: Chu-Liu/Edmonds MST Algorithm 

4 Learning 

In Section 3, we assume that the arc scores are 

available. In fact, the score of each arc is calcu-

lated as a linear combination of feature weights. 

Thus, we need to determine the features for arc 

representation first. With referring to McDonald 

et al. (2005a; 2005b), we use the Margin Infused 

Relaxed Algorithm (MIRA) to learn the feature 

weights based on a training set of documents 

annotated with dependency structures   
1

,
N

i i
T

i
y  

where yi denotes the correct dependency tree for 

the text Ti. 

4.1 Features 

Following (Feng and Hirst, 2012; Lin et al., 2009; 

Hernault et al., 2010b), we explore the following 

6 feature types combined with relations to repre-

sent each labeled arc <ei, r, ej> . 

(1) WORD: The first one word, the last one 

word, and the first bigrams in each EDU, the pair 

of the two first words and the pair of the two last 

words in the two EDUs are extracted as features. 

(2) POS: The first one and two POS tags in each 

EDU, and the pair of the two first POS tags in 

the two EDUs are extracted as features. 

(3) Position: These features concern whether the 

two EDUs are included in the same sentence, and 

the positions where the two EDUs are located in 

one sentence, one paragraph, or one document. 

(4) Length: The length of each EDU.  

(5) Syntactic:  POS tags of the dominating nodes 

as defined in Soricut and Marcu (2003) are ex-

tracted as features. We use the syntactic trees 

from the Penn Treebank to find the dominating 

nodes,. 

(6) Semantic similarity: We compute the se-

mantic relatedness between the two EDUs based 

on WordNet. The word pairs are extracted from 

(ei, ej) and their similarity is calculated. Then, we 

can get a weighted complete bipartite graph 

where words are deemed as nodes and similarity 

as weights. From this bipartite graph, we get the 

maximum weighted matching and use the aver-

aged weight of the matches as the similarity be-

tween ei and ej. In particular, we use 

path_similarity, wup_similarity, res_similarity, 

jcn_similarity and lin_similarity provided by the 

nltk.wordnet.similarity (Bird et. al., 2009) pack-

age for calculating word similarity. 

As for relations, we experiment two sets of 

relation labels from RST-DT. One is composed 

of 19 coarse-grained relations and the other 111 

fine-grained relations
6
.  

4.2 MIRA based Learning 

Margin Infused Relaxed Algorithm (MIRA) is an 

online algorithm for multiclass classification and 

is extended by Taskar et al. (2003) to cope with 

structured classification.  

 

MIRA   Input: a training set   
1

,
N

i i
T

i
y  

1      w0 = 0; v = 0; j = 0  

2      For iter := 1 to K 

3            For i := 1 to N 

4                   update w according to  ,iT
i

y : 

1min j j w w  

                  
s.t.  ( , ) ( , ') ( , ')

where  ' ( , )

i i i i i i

j

i i

s T s T L

DT T

 



y y y y

y w
 

5                      v = v + wj ; 

6                      j = j+1   

7       w = v/(K*N) 

Figure 6: MIRA based Learning 

Figure 6 gives the pseudo-code of the MIRA 

algorithm (McDonld et al., 2005b). This algo-

rithm is designed to update the parameters w us-

ing a single training instance  ,iT
i

y  in each 

iteration. On each update, MIRA attempts to 

keep the norm of the change to the weight vector 

                                                           
6 19 relations include the original 18 relation in RST-DT 

plus one artificial ROOT relation. The 111 relations also 

include the ROOT relation. 

29



as small as possible, which is subject to con-

structing the correct dependency tree under con-

sideration with a margin at least as large as the 

loss of the incorrect dependency trees. We define 

the loss of a discourse dependency tree '
i

y  (de-

noted by ( , ')i iL y y  ) as the number of the EDUs 

that have incorrect heads. Since there are expo-

nentially many possible incorrect dependency 

trees and thus exponentially many margin con-

straints, here we relax the optimization and stay 

with a single best dependency tree 

' ( , )j

i iDT Ty w  which is parsed under the weight 

vector w
j
. In this algorithm, the successive up-

dated values of w are accumulated and averaged 

to avoid overfitting.  

5 Experiments 

5.1 Preparation 

We test our methods experimentally using the 

discourse dependency treebank which is built as 

in Section 2. The training part of the corpus is 

composed of 342 documents and contains 18,765 

EDUs, while the test part consists of 38 docu-

ments and 2,346 EDUs. The number of EDUs in 

each document ranges between 2 and 304. Two 

sets of relations are adopted. One is composed of 

19 relations and Table 1 shows the number of 

each relation in the training and test corpus. The 

other is composed of 111 relations. Due to space 

limitation, Table 2 only lists the 10 highest-

distributed relations with regard to their frequen-

cy in the training corpus.  

The following experiments are conducted: (1) 

to measure the parsing performance with differ-

ent relation sets and different feature types; (2) to 

compare our parsing methods with the state-of-

the-art discourse parsing methods.  

 
Relations Train Test Relations Train Test 
Elaboration 6879 796 Temporal 426 73 

Attribution 2641 343 ROOT 342 38 

Joint 1711 212 Compari. 273 29 

Same-unit 1230 127 Condition 258 48 

Contrast 944 146 Manner. 191 27 

Explanation 849 110 Summary 188 32 

Background 786 111 Topic-Cha. 187 13 

Cause 785 82 Textual 147 9 

Evaluation 502 80 TopicCom. 126 24 

Enablement 500 46 Total 18765 2346 

Table 1: Coarse-grained Relation Distribution 

 

 

Relations Train Test 

Elaboration-additional 2912 312 

Attribution 2474 329 

Elaboration-object-attribute-e 2274 250 

List 1690 206 

Same-unit 1230 127 

Elaboration-additional-e 747 69 

Circumstance 545 80 

Explanation-argumentative 524 70 

Purpose 430 43 

Contrast 358 64 

Table 2: 10 Highest Distributed Fine-grained 

Relations 

5.2 Feature Influence on Two Relation Sets 

So far, researches on discourse parsing avoid 

adopting too fine-grained relations and the rela-

tion sets containing around 20 labels are widely 

used. In our experiments, we observe that adopt-

ing a fine-grained relation set can even be helpful 

to building the discourse trees. Here, we conduct 

experiments on two relation sets that contain 19 

and 111 labels respectively. At the same time, 

different feature types are tested their effects on 

discourse parsing.  

Method Features Unlabeled 
Acc. 

Labeled 
Acc. 

Eisner 1+2 0.3602 0.2651 
1+2+3 0.7310 0.4855 
1+2+3+4 0.7370 0.4868 
1+2+3+4+5 0.7447 0.4957 
1+2+3+4+5+6 0.7455 0.4983 

MST 1+2 0.1957 0.1479 
1+2+3 0.7246 0.4783 
1+2+3+4 0.7280 0.4795 
1+2+3+4+5 0.7340 0.4915 
1+2+3+4+5+6 0.7331 0.4851 

Table 3: Performance Using Coarse-grained Re-

lations. 

Method Feature types Unlabeled 
Acc. 

Labeled 
Acc. 

Eisner 1+2 0.3743 0.2421 
1+2+3 0.7451 0.4079 
1+2+3+4 0.7472 0.4041 
1+2+3+4+5 0.7506 0.4254 
1+2+3+4+5+6 0.7485 0.4288 

MST 1+2 0.2080 0.1300 
1+2+3 0.7366 0.4054 
1+2+3+4 0.7468 0.4071 
1+2+3+4+5 0.7494 0.4288 
1+2+3+4+5+6 0.7460 0.4309 

Table 4: Performance Using Fine-grained Rela-

tions. 

Based on the MIRA leaning algorithm, the 

Eisner algorithm and MST algorithm are used to 

parse the test documents respectively. Referring 

to the evaluation of syntactic dependency parsing, 
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we use unlabeled accuracy to calculate the ratio 

of EDUs that correctly identify their heads, la-

beled accuracy the ratio of EDUs that have both 

correct heads and correct relations. Table 3 and 

Table 4 show the performance on two relation 

sets. The numbers (1-6) represent the corre-

sponding feature types described in Section 4.1.  

From Table 3 and Table 4, we can see that the 

addition of more feature types, except the 6
th
 fea-

ture type (semantic similarity), can promote the 

performance of relation labeling, whether using 

the coarse-grained 19 relations and the fine-

grained 111 relations. As expected, the first and 

second types of features (WORD and POS) are 

the ones which play an important role in building 

and labeling the discourse dependency trees. 

These two types of features attain similar per-

formance on two relation sets. The Eisner algo-

rithm can achieve unlabeled accuracy around 

0.36 and labeled accuracy around 0.26, while 

MST algorithm achieves unlabeled accuracy 

around 0.20 and labeled accuracy around 0.14. 

The third feature type (Position) is also very 

helpful to discourse parsing. With the addition of 

this feature type, both unlabeled accuracy and 

labeled accuracy exhibit a marked increase. Es-

pecially, when applying MST algorithm on dis-

course parsing, unlabeled accuracy rises from 

around 0.20 to around 0.73. This result is con-

sistent with Hernault’s work (2010b) whose ex-

periments have exhibited the usefulness of those 

position-related features. The other two types of 

features which are related to length and syntactic 

parsing, only promote the performance slightly.  

As we employed the MIRA learning algorithm, 

it is possible to identify which specific features 

are useful, by looking at the weights learned to 

each feature using the training data. Table 5 se-

lects 10 features with the highest weights in ab-

solute value for the parser which uses the coarse-

grained relations, while Table 6 selects the top 

10 features for the parser using the fine-grained 

relations. Each row denotes one feature: the left 

part before the symbol “&” is from one of the 6 

feature types and the right part denotes a specific 

relation. From Table 5 and Table 6, we can see 

that some features are reasonable. For example, 

The sixth feature in Table 5 represents that the 

dependency relation is preferred to be labeled 

Explanation with the fact that “because” is the 

first word of the dependent EDU. From these 

two tables, we also observe that most of the 

heavily weighted features are usually related to 

those highly distributed relations. When using 

the coarse-grained relations, the popular relations 

(eg. Elaboration, Attribution and Joint) are al-

ways preferred to be labeled. When using the 

fine-grained relations, the large relations includ-

ing List and Elaboration-object-attribute-e are 

given the precedence of labeling. This phenome-

non is mainly caused by the sparseness of the 

training corpus and the imbalance of relations. 

To solve this problem, the augment of training 

corpus is necessary. 

 
 Feature description Weight 

1 
Last two words in dependent EDU are  
“appeals court”  & Joint 

0.475 

2 
First word in dependent EDU is “racked” 
& Elaboration 

0.445 

3 
First two words in head EDU are “I ‘d” 
& Attribution 

0.324 

4 
Last word in dependent EDU is “in”  
& Elaboration 

-0.323 

5 
The res_similarity between two EDUs is 0  
& Elaboration 

0.322 

6 
First word in dependent EDU is “because” 
& Explanation 

0.306 

7 First POS in head EDU is “DT” & Joint -0.299 

8 
First two words in dependent EDU are “that 
required” & Elaboration 

0.287 

9 
First two words in dependent EDU are “that 
the” & Elaboration 

0.277 

10 
First word in dependent EDU is “because” 
& Cause 

0.265 

Table 5: Top 10 Feature Weights for Coarse-

grained Relation Labeling (Eisner Algorithm) 

 Features Weight 

1 Last two words in dependent EDU are “ap-
peals court”  & List 

0.576 

2 First two words in head EDU are “I ‘d”  
& Attribution 

0.385 

3 First two words in dependent EDU is “that 
the” & Elaboration-object-attribute-e 

0.348 

4 First POS in head EDU is “DT” & List -0.323 
5 Last word in dependent EDU is “in” & List -0.286 
6 First word in dependent EDU is “racked” & 

Elaboration-object-attribute-e 
0.445 

7 First two word pairs are <”In an”,”But 
even”>  & List 

-0.252 

8 Dependent EDU has a dominating node 
tagged “CD”& Elaboration-object-attribute-e 

-0.244 

9 First two words in dependent EDU are “pa-
tents disputes” & Purpose 

0.231 

10 First word in dependent EDU is “to”  
& Purpose 

0.230 

Table 6: Top 10 Feature Weights for Coarse-

grained Relation Labeling (Eisner Algorithm) 

Unlike previous discourse parsing approaches, 

our methods combine tree building and relation 

labeling into a uniform framework naturally. 

This means that relations play a role in building 

the dependency tree structure. From Table 3 and 

Table 4, we can see that fine-grained relations 

are more helpful to building unlabeled discourse 
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trees more than the coarse-grained relations. The 

best result of unlabeled accuracy using 111 rela-

tions is 0.7506, better than the best performance 

(0.7447) using 19 relations. We can also see that 

the labeled accuracy using the fine-grained rela-

tions can achieve 0.4309, only 0.06 lower than 

the best labeled accuracy (0.4915) using the 

coarse-grained relations. 

In addition, comparing the MST algorithm 

with the Eisner algorithm, Table 3 and Table 4 

show that their performances are not significant-

ly different from each other. But we think that 

MST algorithm has more potential in discourse 

dependency parsing, because our converted dis-

course dependency treebank contains only pro-

jective trees and somewhat suppresses the MST 

algorithm to exhibit its advantage of parsing non-

projective trees. In fact, we observe that some 

non-projective dependencies produced by the 

MST algorithm are even reasonable than what 

they are in the dependency treebank. Thus, it is 

important to build a manually labeled discourse 

dependency treebank, which will be our future 

work. 

5.3 Comparison with Other Systems  

The state-of-the-art discourse parsing methods 

normally produce the constituency based dis-

course trees. To comprehensively evaluate the 

performance of a labeled constituency tree, the 

blank tree structure (‘S’), the tree structure with 

nuclearity indication (‘N’), and the tree structure 

with rhetorical relation indication but no nuclear-

ity indication (‘R’) are evaluated respectively 

using the F measure (Marcu 2000).  

To compare our discourse parsers with others, 

we adopt MIRA and Eisner algorithm to conduct 

discourse parsing with all the 6 types of features 

and then convert the produced projective de-

pendency trees to constituency based trees 

through their correspondence as stated in Section 

2. Our parsers using two relation sets are named 

Our-coarse and Our-fine respectively. The in-

putted EDUs of our parsers are from the standard 

segmentation of RST-DT. Other text-level dis-

course parsing methods include: (1) Percep-

coarse: we replace MIRA with the averaged per-

ceptron learning algorithm and the other settings 

are the same with Our-coarse; (2) HILDA-

manual and HILDA-seg are from Hernault 

(2010b)’s work, and their inputted EDUs are 

from RST-DT and their own EDU segmenter 

respectively; (3) LeThanh indicates the results 

given by LeThanh el al. (2004), which built a 

multi-level rule based parser and used 14 rela-

tions evaluated on 21 documents from RST-DT; 

(4) Marcu denotes the results given by Mar-

cu(2000)’s decision-tree based parser which used 

15 relations evaluated on unspecified documents.  

Table 7 shows the performance comparison 

for all the parsers mentioned above. Human de-

notes the manual agreement between two human 

annotators. From this table, we can see that both 

our parsers perform better than all the other 

parsers as a whole, though our parsers are not 

developed directly for constituency based trees. 

Our parsers do not exhibit obvious advantage 

than HILDA-manual on labeling the blank tree 

structure, because our parsers and HILDA-

manual all perform over 94% of Human and this 

performance level somewhat reaches a bottle-

neck to promote more. However, our parsers 

outperform the other parsers on both nuclearity 

and relation labeling. Our-coarse achieves 94.2% 

and 91.8% of the human F-scores, on labeling 

nuclearity and relation respectively, while Our-

fine achieves 95.2% and 87.6%. We can also see 

that the averaged perceptron learning algorithm, 

though simple, can achieve a comparable per-

formance, better than HILDA-manual. The 

parsers HILDA-seg, LeThanh and Marcu use 

their own automatic EDU segmenters and exhibit 

a relatively low performance. This means that 

EDU segmentation is important to a practical 

discourse parser and worth further investigation. 

  
 S N R 
Our-coarse 82.9 73.0 60.6 
Our-fine 83.4 73.8 57.8 
Percep-coarse 82.3 72.6 59.4 
HILDA-manual 83.0 68.4 55.3 
HILDA-seg 72.3 59.1 47.8 
LeThanh 53.7 47.1 39.9 
Marcu 44.8 30.9 18.8 
Human 88.1 77.5 66.0 

Table 7: Full Parser Evaluation 

 MAFS WAFS Acc 
Our-coarse 0.454 0.643 66.84 
Percep-coarse 0.438 0.633 65.37 
Feng 0.440 0.607 65.30 
HILDA-manual 0.428 0.604 64.18 
Baseline - - 35.82 

Table 8: Relation Labeling Performance  

To further compare the performance of rela-

tion labeling, we follow Hernault el al. (2010a) 

and use Macro-averaged F-score (MAFS) to 

evaluate each relation. Due to space limitation, 

we do not list the F scores for each relation. 

Macro-averaged F-score is not influenced by the 

number of instances that are contained in each 
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relation. Weight-averaged F-score (WAFS) 

weights the performance of each relation by the 

number of its existing instances. Table 8 com-

pares our parser Our-coarse with other parsers 

HILDA-manual, Feng (Feng and Hirst, 2012) 

and Baseline. Feng (Feng and Hirst, 2012) can 

be seen as a strengthened version of HILDA 

which adopts more features and conducts feature 

selection. Baseline always picks the most fre-

quent relation (i.e. Elaboration). From the results, 

we find that Our-coarse consistently provides 

superior performance for most relations over 

other parsers, and therefore results in higher 

MAFS and WAFS.  

6 Related Work 

So far, the existing discourse parsing techniques 

are mainly based on two well-known treebanks. 

One is the Penn Discourse TreeBank (PDTB) 

(Prasad et al., 2007) and the other is RST-DT.  

PDTB adopts the predicate-arguments repre-

sentation by taking an implicit/explicit connec-

tive as a predication of two adjacent sentences 

(arguments). Then the discourse relation between 

each pair of sentences is annotated independently 

to characterize its predication. A majority of re-

searches regard discourse parsing as a classifica-

tion task and mainly focus on exploiting various 

linguistic features and classifiers when using 

PDTB (Wellner et al., 2006; Pitler et al., 2009; 

Wang et al., 2010). However, the predicate-

arguments annotation scheme itself has such a 

limitation that one can only obtain the local dis-

course relations without knowing the rich context. 

In contrast, RST and its treebank enable peo-

ple to derive a complete representation of the 

whole discourse. Researches have begun to in-

vestigate how to construct a RST tree for the 

given text. Since the RST tree is similar to the 

constituency based syntactic tree except that the 

constituent nodes are different, the syntactic 

parsing techniques have been borrowed for dis-

course parsing (Soricut and Marcu, 2003; 

Baldridge and Lascarides, 2005; Sagae, 2009; 

Hernault et al., 2010b; Feng and Hirst, 2012). 

Soricut and Marcu (2003) use a standard bottom-

up chart parsing algorithm to determine the dis-

course structure of sentences. Baldridge and Las-

carides (2005) model the process of discourse 

parsing with the probabilistic head driven parsing 

techniques. Sagae (2009) apply a transition based 

constituent parsing approach to construct a RST 

tree for a document. Hernault et al. (2010b) de-

velop a greedy bottom-up tree building strategy 

for discourse parsing. The two adjacent text 

spans with the closest relations are combined in 

each iteration. As the extension of Hernault’s 

work, Feng and Hirst (2012) further explore var-

ious features aiming to achieve better perfor-

mance. However, as analyzed in Section 1, there 

exist three limitations with the constituency 

based discourse representation and parsing. We 

innovatively adopt the dependency structure, 

which can be benefited from the existing RST-

DT, to represent the discourse. To the best of our 

knowledge, this work is the first to apply de-

pendency structure and dependency parsing 

techniques in discourse analysis. 

7 Conclusions 

In this paper, we present the benefits and feasi-

bility of applying dependency structure in text-

level discourse parsing. Through the correspond-

ence between constituency-based trees and de-

pendency trees, we build a discourse dependency 

treebank by converting the existing RST-DT. 

Based on dependency structure, we are able to 

directly analyze the relations between the EDUs 

without worrying about the additional interior 

text spans, and apply the existing state-of-the-art 

dependency parsing techniques which have a 

relatively low time complexity. In our work, we 

use the graph based dependency parsing tech-

niques learned from the annotated dependency 

trees. The Eisner algorithm and the MST algo-

rithm are applied to parse the optimal projective 

and non-projective dependency trees respectively 

based on the arc-factored model. To calculate the 

score for each arc, six types of features are ex-

plored to represent the arcs and the feature 

weights are learned based on the MIRA learning 

technique. Experimental results exhibit the effec-

tiveness of the proposed approaches. In the fu-

ture, we will focus on non-projective discourse 

dependency parsing and explore more effective 

features. 
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