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Multi-output regression aims at learning a mapping from a multivariate input feature space to a multi-
variate output space. Despite its potential usefulness, the standard formulation of the least-squares sup-
port vector regression machine (LS-SVR) cannot cope with the multi-output case. The usual procedure is
to train multiple independent LS-SVR, thus disregarding the underlying (potentially nonlinear) cross
relatedness among different outputs. To address this problem, inspired by the multi-task learning meth-
ods, this study proposes a novel approach, Multi-output LS-SVR (MLS-SVR), in multi-output setting. Fur-
thermore, a more efficient training algorithm is also given. Finally, extensive experimental results
validate the effectiveness of the proposed approach.

© 2013 Published by Elsevier B.V.

1. Introduction

By changing the inequality constraints in the support vector
regression machine (SVR) (Vapnik, 1999; Vapnik, 1998) by the
equality ones, the least-squares SVR (LS-SVR) (Saunders et al.,
1998; Suykens and Vandewalle, 1999; Suyken et al., 2002) replaces
convex quadratic programming problem with convex linear sys-
tem solving problem, thus largely speeding up training. It has been
shown through a meticulous empirical study that the generaliza-
tion performance of the LS-SVR is comparable to that of the SVR
(Van Gestel et al., 2004). Therefore, the LS-SVR has been attracting
extensive attentions during the past few years, such as (An et al,,
2009; Choi, 2009; Xu et al., 2011b; Xu et al., 2011a) and references
therein.

Multi-output regression aims at learning a mapping from a
multivariate input space to a multivariate output space. Compared
with the counterpart classification problem—multi-label classifica-
tion problem (Tsoumakas and Katakis, 2007), the multi-output
regression problem remains largely under-studied. To the best of
our knowledge, only PLS (Partial Least Squares) regression (Abdi,
2003), kernel PLS regression (Rosipal and Trejo, 2001), MSVR (Mul-
ti-output SVR) (Tuia et al., 2011), and multi-output regression on
the output manifold (Liu and Lin, 2009) have been put forward in
literatures. What is more, it is difficult to generalize directly mul-
ti-label classification methods to counterpart regression ones.
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Despite its potential usefulness, the standard formulation of the
LS-SVR cannot cope with the multi-output case. The usual proce-
dure considers developing a different LS-SVR to learn each param-
eter individually. That is to say, traditional approach treats the
different outputs separately in the multi-output case, thus disre-
garding the underlying (potentially nonlinear) cross relatedness
among different outputs. However, when there are relations be-
tween different outputs, it can be advantageous to learn all outputs
simultaneously.

Then the problem is how to model the relatedness between
different outputs. In fact, some clues from some multi-task
learning methods such as hierarchical Bayesian methods (Bakker
and Heskes, 2003; Heskes, 2000; Allenby and Rossi, 1998; Arora
et al., 1998), which are based on some formal definition of the
notion of relatedness of the tasks, motivate this work. Evgeniou
and his coworkers (Evgeniou and Pontil, 2004; Evgeniou et al.,
2005) proposed a regularized multi-task learning method by fol-
lowing the intuition of Hierarchical Bayes (Heskes, 2000; Allenby
and Rossi, 1998; Arora et al., 1998). Our previous work (Xu et al.,
2011b) is also based on the intuition with general setting. But,
this paper restricts us to multi-output setting, since this setting
permits us to design a more efficient training algorithm.

The organization of the rest of this paper is as follows. After LS-
SVR for both single-output and multi-output cases are briefly de-
scribed in Section 2, a novel multi-output regression approach,
MLS-SVR, is proposed in Section 3. Similar to the LS-SVR, one only
solves a convex linear system in the training phrase, too. In Sec-
tion 4 and Section 5, extensive experimental evaluations are con-
ducted, and Section 6 concludes this work.
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Notation

The following notations will be used in this study. Let R be the
set of real numbers and R, the subset of positive ones. For every
n € N, the set of positive integers, we let N, = {1,2,...,n}. A vec-
tor will be written in bold case x € R? with x; as its i-th elements.
The transpose of x is written as x'. The vector
1,=[1,1,...,1]" e R? and 0, = [0,0,...,0]" € R The inner prod-
uct between two vectors is defined as x'z = Zﬁzlxkzk.

Matrices are denoted by capital bold letters A € R™" with A;; as
its (i,j)-th elements. The transpose of A is written as A", If A is an
m x n matrix, we denote by a’ € R™ and a; € R" the i-th row and
the j-th column of A, respectively. If A is an m x m matrix, we de-
fine trace(A) := 3"I",A;;. The identity matrix of dimension m x m is
written as I;,.

The function repmat(A, m,n) or repmat(x, m,n) creates a large
block matrix consisting of an m x n tiling of copies of A or x. The
function blockdiag(A1,A;, . ..,Ay) or blockdiag(X1,Xa, . .. ,Xn) Creates
a block diagonal matrix, having A;,A;,..., A, or X1,X2,...,X, as
main diagonal blocks, with all other blocks being zero matrices.

2. Least-squares support vector regression machine (LS-SVR)
2.1. Single-output case

The single-output regression is regarded as finding the mapping
between an incoming vector X € R? and an observable outputy € R
from a given set of independent and identically distributed (i.i.d.)
samples, i.e., {(xi,y,»)}L]. Let Y = (¥1,¥a.-..,¥)" € R. The single-
output LS-SVR solves this problem by finding w € R™ and b € R
that minimizes the following objective function with constraints:

. 1 1
min J(w,¢) =>W'w+ 757, (1)

weR"™ beR 2 2
st. y=Z'w+bl,+¢ (2)
where  Z= (0X1), p(X2),..., X)) e R*" ¢RI - R™ is a

mapping to some higher (maybe infinite) dimensional Hilbert
space ‘H (also known as feature space) with n, dimensions,
E=(&,6,...,8) €R is a vector consisting of slack variables,
and y € R, is a positive real regularized parameter.

The Lagrangian function for the problem 1,2 is

LW, b, & o) =T(W,&) —a"(Z'W+ b1, + & —y), (3)

where o = (acl,ocz,...,aq)T e R' is a vector consisting of Lagrange

multipliers. The Karush-Kuhn-Tucker (KKT) conditions for optimal-
ity yield the following set of linear equations:

-0 > w=1Zo,

?’,—ﬁ:O = o'1,=0, )
%=0 = o=y

-0 = Z'w+bl+i-y=0,.

By eliminating w and ¢&, one can obtain the following linear
system:

v wla =l ®
1, H|la] Ly]
with the positive definite matrix H=K+y-'I, e R*. Here,
K=2"Zc R is defined by its elements Ki; = @(x;) ¢(Xj) =
K(X;,X;) for V(i,j) € N; x N, and x(-,-) is a kernel function meeting
the Mercer’s theorem (Vapnik, 1999; Vapnik, 1998).

However, it is more difficult to solve directly the linear system
(5), since its coefficient matrix is not positive definite. This can be
overcome by reformulating it into the following one (Suyken et al.,
2002; Suykens et al., 1999)

s 0
0 H
where s = 1JH '1; € R,. This new linear system (6) has a unique
solution, and thus opens many opportunities for using fast and effi-
cient numerical optimization methods. In fact, the solution of the

problem (6) can be found by the following three steps (Suyken
et al., 2002; Suykens et al., 1999):

|- {17'*1"} ®)

[ b
o+bH 1, y

1. Solve 5,v from Hyp =1, and Hv =y;
2. Compute s = 1]7;
3. Find solution: b = #'y/s, o = v — bn.

Therefore, the solution of the training procedure can be found
by solving two sets of linear equations with the same positive
definite coefficient matrix H € R, Since H is positive definite,
one typically first finds the Cholesky decomposition H =LL.
Then since L is lower triangular, solving the system is simply a
matter of applying forward and backward substitution. Other
commonly used methods include the conjugate gradient, single
value decomposition (SVD) or eigendecomposition, etc.

Let the solution of (5) be a* = (o, 05, .. ., oc,*)T and b". Then, the
corresponding decision function is

1
fX) = @X)'W +b" = p(x)'Ze +b" = "o 0(X) p(x;) + b”

i=1
[
=D ow(x.x) + b @)
i=1

Thus, the single-output LS-SVR can be solved using only inner
products between ¢(-)s, not needing to know the nonlinear
mapping. However, in contrast to SVR, «* is not sparse. This
means that the whole training set needs to be used at prediction
time.

2.2. Multi-output case

One can easily extend the single-output regression to the
multiple output case (An et al., 2009). Let Y = [y;;] € R™™. Given
a set of ii.d. samples {(x,»,y")}ﬁ:1 with x; € R? and y' € R™, the
multi-output regression aims at predicting an output vector
y € R™ from a given input vector x € R?, That is to say, the mul-
ti-output regression problem can be formulated as learning a
mapping from RY to R™. The multi-output LS-SVR (MLS-SVR)
solves this problem by finding W = (wq,wy,...,w,) € R™™
and b = (by, by, ... ,bm)T € R™ that minimizes the following objec-
tive function with constraints:

. = 1 T 1 e
wmmx"lnr,lbgamj(w’ E)= 5 trace(W W) + 75 trace(E'E), (8)
st. Y=2"W+repmat(b',,1) +E, (9)

where E = (&,&, ..., &) € RX™

On closer examination, it is not difficult to see that this is
equivalent to m optimization problems similar to the problem
1,2. That is to say, the solution to the regression problem 8,9
decouples between the different output variables, and we need
only compute a single inverse matrix, which is shared by all of
the vectors w;(Vi € Ny;). But it is much more efficient to solve
8,9 directly than to solve 1,2 m times, since they all share the
same matrix H € R, the inverse matrix of which need be com-
puted only once with the Cholesky decomposition, conjugate
gradient, or SVD, etc.
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3. Multi-output LS-SVR (MLS-SVR)

In order to formulate the intuition of Hierarchical Bayes (Hes-
kes, 2000; Allenby and Rossi, 1998; Arora et al., 1998), we assume
all w; € R™ (i € N;,) can be written as w; = wy + v;, where the vec-
tors v; € R™(i € Ny,) are "small” when the different outputs are
similar to each other, otherwise the mean vector wy, € R™ are
“small”. Another way to say this is that wy carries the information
of the commonality and v;(i € Ny,) carries the information of the
specialty. Fig. 1 illustrates the intuition underling the MLS-SVR.

To solve wy e R™ V= (vqy,Vy,...,Vp) € R"™ and b= (b,

bs,...,bn)" € R™ simultaneously, one can minimize the following
objective function with constraints:
. 1 17
min Wo,V,E) = ~wlwg + = —trace(V'V
WUER”h,VeR"h,beij( 0V.5) 2 0o + 2m ( )
1
+ yitrace(ETE), (10)
st. Y=2Z"W+repmat(b',1,1) + E, (11)
where E=(&,&,..., &) € R*™ W = (Wo + Vi, Wo+ Va,...,Wot

Vi) € R Z = (@(X1), P(Xa),..., @(x;)) € R"*, and 7,7 € R, are
two positive real regularized parameters.
The Lagrangian function for the problem 10,11 is
L£(Wo,V,b,E A) = 7(Wp,V, E) — trace(A" (Z'W
+repmat(b’, 1, 1)+ E—Y)), (12)
where A = (0t1,00,...,0m) € R™™ is a matrix consisting of Lagrange

multipliers. The KKT conditions for optimality yield the following
set of linear equations:

m
OHTLUZO = W(]:'X;ZOC,‘7
P
%_0 = V=D0ZA,
L Ty (13)
L_0 = A'1=0,
%2-0 = A=1E
%_0 = Z'W+repmat(b',[,1) +E—-Y = 0.

It is easy to see from (13) that the mean vector wy € R™ and the
vectors v; € R™"(ie N,,) meet the following relation: wy,=
45" v In other words, Wq is a linear combination of vy, v, ...,
V. Since for Vi € N,;, w; is assumed to be w; = wy + v;, w; can also
be expressed as a linear combination of vy, v,,...,vy,. This sug-
gests that one can obtain an equivalent optimization problem with

constraints involving only the V and b as follows.

w1 ’1172

Fig. 1. An illustration of the intuition underlying the MLS-SVR.

. 122 ror 12 T
vgﬂg}l&wj(v, )= 5 WVlmlmV + 5 Etrace(v V)
+ y%tmce(ETE), (14)
st. Y=Z'V+ repmat(%ZTVIm, 1,m) + repmat(b",1,1) + E.
(15)

From (14), one can see that our MLS-SVR tries to find a trade off be-
tween small size vectors for each output, trace(V'V), and closeness
of all vectors to the average vector, VlmlﬁVT. But (8) only tries to
find small size vectors for each output, which results in decoupling
between the different output variables.

Similar to LS-SVR, by eliminating W and Z from (13), one can
obtain the following linear system:

Oon PI7O]_[On) a6
P H|lx y
. /_/L . . .
where P = blockdiag(1,1,...,1;) € R™*m  the positive definite
matrix ~ H=Q+y 'Ly + (m/2)Q € R™*™ Q = repmat(K,m,m) €

R™*m - Q = blockdiag(K,K, ..., K) € R"™ K =Z7Z"Z ¢ R™ o0 = (o,
of,...,0t eR™, and y = (y,y%,...,y")" € R™. Thus, the linear
system (16) consists of (I+ 1) x m equations.

Let the solution of (16) be o* = (o7, 057,...,z")" and b". Then,
the corresponding decision function for the multiple outputs is

fx) = X)"W* + b = p(x)"repmat(w;;, 1,m) + @(x)"V" + b’

= @(x)"repmat(y "Zx;, 1,m) + ?(p(x)TZA* +b”

ir=1

m 1 1
= repmat (ZZO(;‘,J«K(X, X)), 1, m) + % > d (kX)) + b

=1 j=1 =1

(17)

4. More efficient training algorithm

Again, similar to LS-SVR, the linear system (16) is not positive
definite, so solving (16) directly is more difficult. But it is reformu-
lated into the following one:

Tyy—1
|: S 0ml><ml:||: 71b :| _ P'H y ’ (18)
0m><m H H Pb+0( y

with S = PTH'P € R™™. It is very easy to show that S is a positive
definite matrix. In this way, this new linear system (18) is positive
definite, whose solution can be found in the following three steps:

1. Solve 1, v from Hy =P and Hv =y;
2. Compute S = PTyj;
3. Find solution: b =S¢y, ot = v — nh.

Therefore, the solution of the training procedure can be found
by solving two sets of linear equations with the same positive def-
inite coefficient matrix H € R™*™, Since H is symmetric positive-
definite, many fast and efficient numerical optimization methods
can be adopted, such as Cholesky decomposition, conjugate gradi-
ent, SVD and eigendecomposition, etc. Additionally, since the num-
ber of outputs m is usually very small relative to the number of
samples I, one can easily obtain the inverse of S € RT*™ just using
matrix multiplications.
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5. Experiments and discussions

In order to assess prediction performance, average relative error
1 e E
Do B Gi-)

\/ LY G
indices are used, where y; and y; are actual and predicted outputs,
respectively, and y and y are averages of actual and predicted out-
puts, respectively.

Here, the radial basis function (RBF) kernel function is adopted:
K(X,Z) = exp(—p|x — z||*),p > 0. The reasons are threefold: (a) the
linear kernel function is a special case of RBF (Keerthi and Lin,
2003); (b) The Sigmoid kernel function is not positive definite,
and for certain parameters, and the Sigmoid kernel function be-
haves like RBF (Lin and Lin, 2003); (c) Relatively, there are more
parameters in the polynomial kernel function so that it is more
difficult for model selection. In addition, the polynomial kernel
function has also numerical difficulties, such as overflow or
underflow.

Finally, in order to identify proper parameters, the grid search
(Xu et al, 2007; Hsu et al, 2010) is used. Let ye {27,
273 .28 e {27278 . 2% and pe{27,278, ... 2%
For all possible combinations (7, 4,p), the average relative error &
is calculated using leave-one-out (LOO) procedure. Thus, an opti-

s=11, ‘yy;y‘ and correlation coefficient R =
i

[—8—0=0.01 ——0=0.02
0.1p

=003 —%—0=004]

0.09r

0.08

0.07

0.06

0.05r

0.04r

Average relative error (6/%)

0.03r

0.021

0.01

PLS Kernel PLS ~ MSVR LS-SVR MLS-SVR

(a) Average relative error for y;

[—2—0=001 ——0=0.02
2.25¢

220 oo O o

2151

I e

2.051

0=0.03 —%—0=0.04]

2t

195

191

Average relative error (6/%)

1.851

1.8

PLS Kernel PLS MSVR LS-SVR  MLS-SVR

(c) Average relative error for y,

1081

mal pair (y*,1",p*) can be determined. We have implemented all
related approaches in MATLAB R2010a on an IBM 3850 M2. The
corresponding toolbox can be available from the first author upon
request for academic use.

5.1. Synthetic data set

The data set contains 1000 noisy observations, generated using
a simulated two-output time series process (Chen, 2002) as
follows.

¥1(k) = 0.1sin(my,(k — 1)) + (0.8 — 0.5exp(—y3(k — 1))y, (k — 1)

—(03+0.9exp(—y2(k— 1)y, (k —2) + € (k), (19)
Ya(k) = 0.6y,(k — 1) + 0.2y, (k — 1)y,(k — 2)
+1.2tanh(y, (k — 2)) + &(k), (20)

given the initial conditions y,(0) =y,(-1) =y,(0) =y,(-1) =0,
where the zero-mean Gaussian noise €(k) = (€;(k), €;(k))" has a
covariance ol, with I, being the 2 x 2 identity matrix. The first
500 data samples are used for training and the other 500 samples
for validating the obtained model. The input vector is given by
X(k) = (y;(k = 1),y,(k = 2),y,(k = 1),y,(k = 2))". In the study, we
let o € {0.01,0.02,0.03,0.04}.

The average relative error and correlation coefficient for y, and

i

0.98 |

0.96

0.94

092

09

0.88

Correlation coefficient (R)

0.86

0.841

0.82

PLS Kernel PLS MSVR LS-SVR  MLS-SVR

(b) Correlation coefficient for y;

I%JZO.OI —o— o =0.02
0.92r

0 =0.03 —%—0=0.04]

09

0.88

0.86

0.841

0.82r

0.8

Correlation coefficient (R)

0.781

0.76

N~
e\e/e/\
——

0.74

PLS Kernel PLS MSVR LS-SVR  MLS-SVR

(d) Correlation coefficient for y,

Fig. 2. Comparisons of the predicted results on synthetic data set.
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Fig. 3. Comparisons of the predicted results on corn data set.
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Fig. 4. Comparisons of the predicted results on polymer data set.
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Fig. 5. Comparisons of the predicted results on broomcorn data set.

y, are plotted in Fig. 2. It can be easily seen that our proposed MLS-
SVR can capture the underlying dynamics of the system better that
other methods at all different noise conditions. This means that the
cross-output information helps improve the performance single
output regression methods.

5.2. Corn data set

Corn data set ! consists of 80 examples of corn measured on 3
different near-infra-red spectrometers, m5, mp5 and mp6. In this
study, spectra from instrument m5 are used, where the wavelength
range is 1100-2498 nm at 2 nm intervals. The moisture, oil, protein
and starch values represent four output/dependent variables. As the
first principal component describes 99% of the overall variance, this
indicates high multi-collinearity among the input/independent vari-
ables. Similar to (Rosipal and Trejo, 2001), instead of modeling the
real response we generated four different outputs as follows:
y, = exp(X'x/2¢),y, = exp(X'B'X/2c1),y; = (X'x/c)’ exp(x"x/2c),
and y, = 0.3y, + 0.25y, — 0.7y, where B is a symmetric matrix with
off-diagonal elements set to 0.8 and diagonal elements set to 1.0, and
cand c; are averages of {x'x;}%%, and {x'B 'x;}%,.

! Corn data set can be available from http://www.eigenvector.com/data/Corn/
index.html

The first 60 examples are used to create a training data set, and
the remaining 20 examples form a testing data set. In order to
make the synthetic outputs more realistic, Gaussian white noise
with different levels is added, where noise level, denoted as n/s,
corresponds to ratios of the standard deviation of the noise
and the clean output variables. In this study, we set
n/s € {15%,30%,60%,90%}. For each noise level, 25 different
training sets are generated. It is worth mentioning that the values
in Fig. 3 correspond to average of 25 different simulations.

From Fig. 3, it is not difficult to see that our MLS-SVR outper-
forms obviously LS-SVR. In our opinion, the main reason is that
MLS-SVR considers the underlying (potentially nonlinear) cross
relatedness among different outputs. For lower noise level, such
as n/s = 15%,30% and 60%, MLS-SVR outperforms or matches at
least the other multi-output methods. But when n/s = 90%, PLS
regression and kernel PLS regression has a certain advantage over
MLS-SVR. We think that the main reason is as follows. The PLS
regression and kernel PLS regression represents input and output
matrix with principal components in input or feature space, so that
the information underlying in input and output matrix can be
made use of. Furthermore, principal components themselves can
greatly reduce the effect of noise.
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5.3. Polymer data set

This data set is taken from a polymer test plant.? There are 10 in-
put variables, measurements of controlled variables in a polymer pro-
cessing plant (temperatures, feed rates, etc.), and 4 output variables
are measures of the output of that plant. It is claimed that this data
set is particularly good for testing the robustness of nonlinear model-
ing methods to irregularly spaced data. The first 41 samples are taken
as training set, and the remaining 20 samples as testing set.

From Fig. 4, one can conclude that our MLS-SVR is comparable
to kernel PLS and MSVR. However, similar performance is also ob-
tained by training 4 independent LS-SVR. Hence one may conjec-
ture that these four outputs are weakly related to each other or
unrelated in the way we define in this study.

5.4. Broomcorn data set

The data set (Xu et al., 2011b) consists of 128 samples of broom-
corn from Institute of Grop Germplasm Resources, Chinese Acad-
emy of Agricultural Sciences. The used instrument is a Bran
+ Luebbe (Technicon) InfraAlyzer IA 450 NIR spectrophotometer,
which gives rapid measurements of protein, lysine and starch com-
ponents of broomcorn sample. This workhorse instrument covers
the 1445 to 2348 nm range with 19 filters, and can be programmed
with calibrations to make measurements of up to 10 constituents
per product, and for multiple products.

This is a 3-outputs regression problem. The first 96 samples are
used to create a training data set, and the remaining 32 samples
form a testing data set. Fig. 5 gives the comparisons of the pre-
dicted on broomcorn data set. From Fig. 5, one can see that all
methods, modeling the cross-output information, are superior than
LS-SVR. This means that is is advantageous to learn all outputs
simultaneously. What’s more, the performance of our proposed
MLS-SVR is better than other methods in terms of average relative
error and correlation coefficient.

6. Conclusions

In this study, we study the multi-output regression problem,
which aims at learning a mapping from a multivariate input space
to a multivariate output space. Despite its potential usefulness,
compared with the counterpart classification problem—multi-label
classification problem, the multi-output regression problem re-
mains largely under-studied.

It has been shown through a meticulous empirical study that the
generalization performance of the LS-SVR is comparable to that of
the SVR. However, the standard formulation of the LS-SVR cannot
cope with the multi-output case. The usual procedure is to train mul-
tiple independent LS-SVR, thus disregarding the underlying (poten-
tially nonlinear) cross relatedness among different outputs.

To address this problem, inspired by the multi-task learning
methods, this study proposes a novel approach in multi-output
setting. Furthermore, a more efficient training algorithm is also gi-
ven. Finally, extensive experimental evaluation is conducted on
synthetic, corn, polymer, and broomcorn data sets. The experimental
results validate the effectiveness of the proposed approach.
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