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Abstract. The papers and patents are usually considered as the in-
dicators of basic science studies and technologies, respectively. Previous
linkage research between papers and patents mainly focus on the analysis
of non-patent literature cited by patent from the viewpoint of citation
analysis. Thus, one will miss many valuable scientific papers that are
not cited by patents until now. This paper proposes a simple procedure
for constructing topic linkages between papers and patents by analyzing
these two kinds of information resources simultaneously. Experimental
results on new energy vehicles indicate that our approach is feasible and
efficient.
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1 Introduction

The papers and patents are usually considered as the indicators of basic science
studies and technologies, respectively. Intuitively, there should be some inter-
active and exclusive relationships between papers and patents, and it can be
advantageous to analyze these two kinds of information resources (corpora) si-
multaneously. This motivated the introduction of the linkage between papers and
patents, which is pioneered by Narion and his co-works in 1976 [1]. There has
been abundant literature on the linkage between papers and patents showing that
the linkages are indeed helpful to understand the technology development trend-
s [2], university-industry-government relations [3], to measure innovation [4], etc.

Previous linkage research between papers and patents mainly focus on the
analysis of non-patent literature cited by patent from the viewpoint of citation
analysis. Thus, one will miss many valuable scientific papers that are not cited
by patents until now. The main problem, solved in the study, is to link the
topics between these papers and patents. Fig. 1 gives a detailed illustration. A
näıve approach assumes that the papers and patents are part of a single corpus,
and are exchangeable within it. However, this assumption is not appropriate for
many text analysis problems. Wang et al. [5] apply Gaussian (Markov) random
fields to model the correlations of different corpora, and develop Markov topic
models (MTMs). MTMs can capture both the internal topic strcture within each
corpus and the relationships between topics across the corpus.

176



2 Shuo Xu et al.

In fact, MTM is a joint model with Markov assumption. In this study, we pro-
pose a non-joint method for topic linkages between papers and patents. Specifi-
cally, our procedure has the following simple steps: (1) to discover the topics in
the papers and patents corpus, respectively, with probabilistic topic models, in
Section 2; (2) to calculate the topic similarity in Section 3; (3) to construct topic
linkages between papers and patents in Section 4. In Section 5, an experimental
evaluation is conducted, and Section 6 concludes this work.
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Fig. 1. The illustration of topic linkages between papers and patents

2 Latent Dirichlet Allocation (LDA)

The first step in topic linkages between papers and patents is to discover the
topics in the papers and patents corpus, respectively. Probabilistic topic models,
which are generative model for documents, are based upon the idea that doc-
uments are mixtures of topics, where a topic is a probability distribution over
words. For more elaborate and detailed surveys we refer the readers to [6, 7].

In the study, Latent Dirichlet Allocation (LDA) [8], a widely used topic mod-
el, is utilized. In the generative process, for each document m ∈ [1,M ], a multi-
nomial distribution ϑm over topics is randomly sampled from the Dirichlet(α),
and then to generate each word, a topic zm,n(m ∈ [1,M ], n ∈ [1, Nm]) is chosen
from this topic distribution, and a word wm,n is generated by randomly sampling
from a topic-specific multinomial distribution ϕzm,n

. A topic-specific multinomi-
al distribution ϕk(k ∈ [1, K]) is also randomly sampled from the Dirichlet(β).

Although LDA is still a relatively simple model, exact inference is generally
intractable. A variety of algorithms have been used to estimate the parameters
of topics models, such as variational EM (Expectation Maximization) [9, 8], ex-
pectation propagation [10, 11], belief propagation [12], and Gibbs sampling [13,
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14], etc. In this paper, Gibbs sampling algorithm is used, since it provides a sim-
ple method for obtaining parameter estimates under Dirichlet priors and allows
combination of estimates from several local maxima of the posterior distribution.

The Gibbs sampling procedure considers each word token in the text collec-
tion in turn, and estimates the probability of assigning the current word token
to each topic, conditioned on the topic assignments to all other word tokens. The
LDA model has two unknown multinomial parameter sets Θ = {ϑm}

M
m=1 and

Φ = {ϕk}
K
k=1 as well as the latent variables z. The Gibbs sampling algorithm

gives direct estimates of z. Θ and Φ can be obtained from the count matrices as

follows: ϕk,v =
n
(v)
k

+βv
∑

V
v=1 (n

(v)
k

+βv)
, ϑm,k =

n(k)
m +αk

∑
K
k=1 (n

(k)
m +αk)

, where V is the number of

unique words, n
(v)
k is the number of tokens of word v assigned to topic k, and

n
(k)
m represent the number of tokens in document m assigned to topic k.

3 Topic Similarity Measurement

To construct topic linkages between papers and patents, the similarity between
a pair of topics, ϕ1 and ϕ2, should be measured. In the previous topic modeling
research where topic similarity must be measured, symmetrized Kullback-Leibler
(KL) divergence [15, 14], Jensen-Shannon (JS) divergence [16, 14] and cosine sim-
ilarity [17] are frequently used without any formal validation.

In fact, apart from the three metrics above, there exist many alternatives,
such as Spearman’s rank order correlation coefficient (Spearman’s ρ) [18], K-
endall’s τ [18], Jaccard’s coefficient [19] and so on. Since as a multinomial distri-
bution over the vocabulary, a topic, ϕ, is also be seen as a V -dimensional vector,
where each dimension i is a probability of vi in ϕ, or as a ranked list of words.
Additionally, a topic can also be represented by a subset of topic words: words
with a probability over a threshold or top words that contribute a cumulative
probability mass over a threshold.

Symmetrized KL divergence is a symmetrized KL measure of the d-
ifference between two probability distributions. Formally, symKL(ϕ1,ϕ2) =
1
2 (KL(ϕ1||ϕ2) + KL(ϕ2||ϕ1)) with KL(ϕ1||ϕ2) =

∑V
v=1 ϕ1,v log

ϕ1,v

ϕ2,v
.

JS divergence is another symmetric variation of KL divergence. Formally,
JS(ϕ1,ϕ2) =

1
2 [KL(ϕ1||ϕ) + KL(ϕ2||ϕ)], where ϕ = 1

2 (ϕ1 +ϕ2).
Cosine similarity measures the similarity between two vectors by finding

the cosine of the angle between them, i.e., cos(ϕ1,ϕ2) =
ϕ1·ϕ2

‖ϕ1‖×‖ϕ2‖
.

Spearman’s ρ is defined as the linear correlation coefficient of the ranks

and is given by ρ(ϕ1,ϕ2) = 1−
6
∑

V
v=1(ϕ1,v−ϕ2,v)

2

V (V 2−1) .

Kendall’s τ measures the correlation between the relative ordering of ranks
of the two ranked lists. It compares all the possible pairs of ranks (ϕ1,i, ϕ1,j)
and (ϕ2,i, ϕ2,j) to determine the number of matching and non-matching pairs.
A pair is matching or concordant if ϕ1,i > ϕ1,j ⇒ ϕ2,i > ϕ2,j or ϕ1,i < ϕ1,j ⇒

ϕ2,i < ϕ2,j , and non-matching or discordant if ϕ1,i > ϕ1,j ⇒ ϕ2,i < ϕ2,j or
ϕ1,i < ϕ1,j ⇒ ϕ2,i > ϕ2,j . The correlation between the two ranked lists is
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defined as τ(ϕ1,ϕ2) =
(nc−nd)

√

nc+nd+nt
1×

√

nc+nd+nt
2

, where nc/nd are the number of

concordant/discordant pairs, nt
1/n

t
2 are the number of ties in ϕ1/ϕ2.

Jaccard’s coefficient measures the similarity and diversity of two sets. Let
A,B as a subset of topic words for ϕ1 and ϕ2. These subsets can be obtained in
many ways. In the study, we let the subsets consist of top words that contribute
a cumulative probability mass over a threshold ν (= 0.5 here). Then Jaccard’s

coefficient is can be easily calculated as Jaccard(ϕ1,ϕ2) =
|A

⋂
B|

|A
⋃

B| .

Each metric looks at the relationship between two topics from different views.
The symmetrized KL divergence and JS divergence consider the divergence of
tow multinomial probabilities, and lower divergence would indicate higher sim-
ilarity between two topics. Cosine similarity measures the angle of two vectors.
Spearman’s rank order correlation coefficient and Kendall’s τ consider the ranks
of words within a topic, and Jaccard’s coefficient focuses on the association
between two sets. Note that the range of both ρ and τ is [−1, 1], which are
transformed linearly into [0, 1].

4 Topic Linkages Construction

If one can see topics in papers and patents as sources and sinks, respectively,
or vise verse, and topic similarities as distances between sources and links (one
can easily transform similarities into distances), the topic linkages construction
problem can be transformed into the well-known optimal transportation prob-

lem [20, 21]. The question answered by the optimal transportation problem is:
what is the cheapest way to move a set of masses from sources to sinks? Here
cost is defined as the total mass × distance moved. For example, one can think
of the sources as factories and the sinks as warehouses to make the problem
concrete. We assume that the sources are shipping exactly as much mass as the
sinks are expecting.

Formally, in the optimal transportation problem, we are given topic sets
Φ1 = {ϕ1

1,ϕ
1
2, · · · ,ϕ

1
K1

}, Φ2 = {ϕ2
1,ϕ

2
2, · · · ,ϕ

2
K2

} with respective associated
nonnegative weights p = (p1, p2, · · · , pK1), q = (q1, q2, · · · , qK2) summing to one.
Since there are no prior knowledge about the importance of topics, uniform
weights, i.e. p = ( 1

K1
, 1
K1

, · · · , 1
K1

), q = ( 1
K2

, 1
K2

, · · · , 1
K2

), are utilized in the
study. The optimal transportation distance between Φ1 and Φ2 is defined as
d(Φ1, Φ2) =

∑K1

i=1

∑K2

j=1 f
∗
i,jd(ϕ

1
i ,ϕ

2
j), where the optimal flow (topic linkages)

F ∗ = [f∗
i,j ]K1×K2 between Φ1 and Φ2 is the solution of the following linear

programming, which guarantees an optimal solution.

min
F∈RK1×K2

K1∑

i=1

K2∑

j=1

fi,jd(ϕ
1
i ,ϕ

2
j) (1)

s.t. fi,j > 0, 1 ≤ i ≤ K1, 1 ≤ j ≤ K2 (2)

K2∑

j=1

fi,j = pi, 1 ≤ i ≤ K1 (3)
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K1∑

i=1

fi,j = qj , 1 ≤ j ≤ K2 (4)

K1∑

i=1

K2∑

j=1

fi,j = 1 (5)

Example: Assume that papers and patents are mixtures of 4 and 5 topics,
respectively. The similarity matrix between these topics is given in Figure 2
(a). In order to construct the topic linkages between papers and patents with
the optimal transportation solving, the similarity matrix is transformed into the
distance matrix simply by d(ϕ1

i ,ϕ
2
j) = 1−Sim(ϕ1

i ,ϕ
2
j). The optimal flow matrix

F ∗, which is our expected topic linages, is shown Figure 2 (b). Once the optimal
flow matrix is known, it is very easy to construct the topic linkages. For instance,
according to Figure 2 (b), one can link the Topic 1 in papers to Topic 1 and
Topic 5 in patents with different linkage strength f1,1 = 0.05 and f1,5 = 0.20.

X
X
X
X
X
XX

Papers
Patents Topic

1
Topic

2
Topic

3
Topic

4
Topic

5
Topic 1 0.5 0.3 0.4 0.1 0.9
Topic 2 0.2 0.4 0.5 0.3 0.7
Topic 3 0.1 0.4 0.5 0.3 0.5
Topic 4 0.4 0.7 0.5 0.3 0.3

X
X
X
X
X
XX

Papers
Patents Topic

1
Topic

2
Topic

3
Topic

4
Topic

5
Topic 1 0.05 0.00 0.00 0.00 0.20
Topic 2 0.10 0.00 0.15 0.00 0.00
Topic 3 0.00 0.00 0.05 0.20 0.00
Topic 4 0.05 0.20 0.00 0.00 0.00

(a) Topic similarity matrix (b) Optimal flow matrix

Fig. 2. The topic similarity and optimal flow matrices.

5 Experiments and Discussions

In this study, we choose the Derwent Innovation Index (DII) as the data source
for patents, and National Science and Technology Library 1 as the data source for
papers. The same query, described in [22], is used for two different data sources.
The fields title, keywords, and abstracts are considered for the paper data set,
and TI, AB for the patent data set. Totally, there are 39,827 papers and 79,104
patents. In addition to downcasing and removing stopwords and numbers, we
also removed the words appearing only one kind of data set. In our experiments,
the number of topics K1, K2 are fixed at 100, and the symmetric Dirichlet priors
α, β are set at 0.5 and 0.1 respectively. Gibbs sampling is run for 2000 iterations.

In order to evaluate the performance of six metrics, the procedure proposed
by Kim & Oh [23] is utilized. Specifically, starting from a set of topics extracted
for papers/patents, we substitute five topics with the topics from patents/papers
that are found to be most similar according to each of the six metrics to form
six modified sets of topics. Then the normalized negative log likelihoods of the

1 NSTL, http://www.nstl.gov.cn/
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Fig. 3. Comparison of negative log likelihood for six similarity metrics.

respective corpus, which measures how well the model explains the corpus, are
calculated using the modified sets of topics, and are given in Fig 3.

As shown in Fig 3, symmetrized KL divergence produces consistently the
lowest normalized negative log likelihood scores. Another way to say this is
symmetrized KL divergence performs the best among the six metrics, which is
different from observations by Kim & Oh [23]. Fig. 4 gives 4 topics from papers
and patents, respectively, in which each topic is shown with the 10 words. With
our proposed approach, topic 88, 77, 83, 10 in papers are linked to topic 23, 80,
93, 76, respectively on the basis of the symmetric KL divergence. From Fig. 4,
one can easily see that these topic linkages are quite intuitive and quite precise
in the sense of conveying a semantic summary of new energy vehicles field, and
LDA model can explain better patents than papers. This indicates that our
approach is feasible and efficient.

6 Conclusions

The papers and patents are usually considered as the indicators of basic science
studies and technologies, respectively. Previous linkage research between papers
and patents mainly focus on the analysis of non-patent literature cited by patent
from the viewpoint of citation analysis. Thus, one will miss many valuable sci-
entific papers that are not cited by patents until now. The study tries to link
the topics between in papers and patents, which enables knowledge navigation
among heterogeneous data sources from underlying topic levels.

In order to construct the topic linkages between papers and patents, we
propose a non-joint method, consisting of three simple steps: (1) to discover the
topics in the papers and patents corpus, respectively, with probabilistic topic
models; (2) to calculate the topic similarity; (3) to transform the topic linkage
construction problem into the well-known optimal Finally, experimental results
on new energy vehicles indicate that our approach is feasible and efficient.

181



Topic Linkages between Papers and Patents 7

Topic 88 Topic 77 Topic 83 Topic 10
Word Prop. Word Prop. Word Prop. Word Prop.

electron 0.360167 vehicle 0.196953 energized 0.708323 analysis 0.134864
field 0.102091 hybrid 0.177909 distribute 0.085559 loss 0.105088

emission 0.090633 electric 0.147691 source 0.019392 present 0.051836
function 0.065482 drive 0.038712 range 0.016205 component 0.041501
work 0.058801 power 0.017861 depend 0.015792 result 0.031639
ev 0.028510 hev 0.017530 cs 0.013460 analyzer 0.026125
hot 0.020922 brake 0.014130 primary 0.009063 part 0.023950

secondary 0.015511 economy 0.013488 discuss 0.006525 detail 0.022785
low 0.013667 powertrain 0.012264 total 0.005994 due 0.022249

enhance 0.008498 motor 0.010845 considered 0.003840 discuss 0.022154
(a) Topics in Papers

Topic 23 Topic 80 Topic 93 Topic 76
Word Prop. Word Prop. Word Prop. Word Prop.
device 0.893249 motor 0.979361 vehicle 0.532848 control 0.929425
draw 0.023259 stepper 0.000924 hybrid 0.370708 block 0.017018
show 0.013568 asynchronous 0.000545 decelerated 0.026651 diagram 0.015058

schematics 0.011200 directly 0.000370 show 0.016610 feedback 0.007267
function 0.006906 order 0.000156 draw 0.009068 function 0.004806
effect 0.006247 overheated 0.000156 improve 0.005725 regulator 0.003404

manner 0.004564 block 0.000127 schematics 0.005080 program 0.001894
simple 0.003528 relevant 0.000108 accept 0.004388 accordance 0.001361
design 0.001549 standard 0.000088 ensure 0.002945 perform 0.001060

configure 0.001509 conceptually 0.000088 mild 0.001526 instruction 0.000727
(b) Topics in Patents

Fig. 4. An illustration of 4 topic linkages between papers and patents.
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