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Abstract

In many real-world applications, unlabeled examples are inexpensive and easy to obtain. Semi-supervised
approaches try to utilize such examples to boost the predictive performance. But previous research
mainly focuses on classification problem, and semi-supervised regression remains largely under-studied.
In this work, a novel semi-supervised regression method, semi-supervised LS-SVR (S2LS-SVR), is
proposed on the basis of LS-SVR. Similar to the LS-SVR, one only solves a convex linear system in the
training phrase too, thus largely speeding up training. Experimental results on corn data set indicate
that our approach is feasible and efficient.

Keywords: Semi-supervised Learning; Regression Problem; Least-squares Support Vector Regression
Machine (LS-SVR); Semi-supervised LS-SVR (S2LS-SVR)

1 Introduction

Traditionally, hypotheses are learned from a large number of training examples, in each of which
a label is attached. For classification problem, the label indicates the category into which the
corresponding example falls; for regression problem, the label is a real-value. Most machine
learning methods rely on the availability of large labeled examples, since the larger the number
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of training examples, the better the performance of the resulting machines. However, human
annotation is time-consuming, making labeled data costly to obtain in practice.

To overcome this problem, a co-training algorithm is proposed by Blum and Mitchell [1] in
1988. Since then, many semi-supervised learning approaches [2, 3, 4] are raised, such as semi-
supervised support vector classifier (S3VC) [5], etc. These methods leverage large amounts of
relatively inexpensive unlabeled data along with small amounts of labeled data. The empirical
results of these papers indicate that indeed unlabeled data can be used to significantly improve
the predictive performance. But previous research mainly focuses on classification problem, and
semi-supervised regression remains largely under-studied. To the best of our knowledge, only
semi-supervised ridge regression [6, 7] and co-training 𝑘NN [8, 9] has been put forward in litera-
tures. What’s more, it is difficult to generalize directly semi-supervised classification models to
counterpart regression ones [6].

By changing the inequality constraints in the support vector regression machine (SVR) [10, 11]
by the equality ones, the least-squares SVR (LS-SVR) [12] replaces convex quadratic programming
problem with convex linear system solving problem, thus largely speeding up training. It has been
shown through a meticulous empirical study that the generalization performance of the LS-SVR
is comparable to that of the SVR [13]. Therefore, the LS-SVR has been attracting extensive
attentions during the past few years, such as [14] and references therein. On the basis of the
LS-SVR, a novel semi-supervised regression approach, semi-supervised LS-SVR (S2LS-SVR), is
proposed in Section 3. Similar to the LS-SVR, one only solves a convex linear system in the
training phrase, too. In Section 4 and Section 5, an experimental evaluation is conducted, and
Section 6 concludes this work.

2 Least-squares Support Vector Regression Machine (LS-

SVR)

Given a training set {(x1, 𝑦1), (x2, 𝑦2), ⋅ ⋅ ⋅ , (x𝑚, 𝑦𝑚)} with (x𝑖, 𝑦𝑖) ∈ ℝ𝑑 ×ℝ(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚). Let
y = (𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑚)T. Then the primal problem of the LS-SVR can be formally defined as [12]

min
w∈ℝ𝑛ℎ ,𝑏∈ℝ,𝜉∈ℝ𝑚

𝐽(w, 𝜉) =
1

2
wTw + 𝛾

1

2
𝜉T𝜉 (1)

s.t. 𝑦𝑖 = wT𝜑(x𝑖) + 𝑏+ 𝜉𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚 (2)

where 𝜑 : ℝ𝑑 → ℝ𝑛ℎ is a mapping to some higher (maybe infinite) dimensional feature space
ℋ with 𝑛ℎ dimensions, each component of 𝜉 = (𝜉1, 𝜉2, ⋅ ⋅ ⋅ , 𝜉𝑚)T is a slack variable, and 𝛾 is a
positive real regularized parameter.

Through the Karush-Kuhn-Tucker (KKT) conditions of the Lagrangian, the solution of the
problem (1)-(2) is the same as that of the following linear system:[

0 eT

e K+ 𝛾−1I

] [
𝑏 𝛼

]
=

[
0 y

]
(3)

where 𝛼 = (𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑚)
T is a vector consisting of Lagrange multipliers, e = (1, 1, ⋅ ⋅ ⋅ , 1)T, I is

an identity matrix and 𝐾𝑖,𝑗 = 𝐾(x𝑖,x𝑗) = 𝜑(x𝑖)
T𝜑(x𝑗)(𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) with 𝐾(⋅, ⋅) is a kernel

function meeting the Mercer’s theorem [10, 11].
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Let the solution of linear system (3) be 𝛼∗ = (𝛼∗
1, 𝛼

∗
2, ⋅ ⋅ ⋅ , 𝛼∗

𝑚)
T and 𝑏∗. The corresponding

decision function is

𝑓(x) = w∗T𝜑(x) + 𝑏∗ =
𝑚∑
𝑖=1

𝛼∗
𝑖𝜑(x𝑖)

T𝜑(x) + 𝑏∗ =
𝑚∑
𝑖=1

𝛼∗
𝑖𝐾(x𝑖,x) + 𝑏∗. (4)

3 Semi-supervised LS-SVR (S2LS-SVR)

Given a labeled training set ℒ = {(x1, 𝑦1), (x2, 𝑦2), ⋅ ⋅ ⋅ , (x𝑚, 𝑦𝑚)} and a unlabeled training set
𝒰 = {x𝑚+1,x𝑚+2, ⋅ ⋅ ⋅ ,x𝑚+𝑢}. Usually, these data are at hand and 𝑢 ≫ 𝑚. For convenience, let
y = (𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑚)T.

3.1 Primal and Dual Problems

Suppose one can estimate the resulting label 𝑦𝑖 of x𝑚+𝑖 ∈ 𝒰(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑢) in some way. Defining
ŷ = (𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑢)T. Similar to semi-supervised ridge regression [6, 7], the primal problem of
the S2LS-SVR can be formally defined

min
w∈ℝ𝑛ℎ ,𝑏∈ℝ,𝜉∈ℝ𝑚,𝜁∈ℝ𝑢

𝐽(w, 𝜉, 𝜁) =
1

2
wTw + 𝛾

1

2
𝜉T𝜉 + 𝜆

1

2
𝜁T𝜁 (5)

s.t. 𝑦𝑖 = wT𝜑(x𝑖) + 𝑏+ 𝜉𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚 (6)

𝑦𝑖 = wT𝜑(x𝑚+𝑖) + 𝑏+ 𝜁𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑢 (7)

where 𝜉 = (𝜉1, 𝜉2, ⋅ ⋅ ⋅ , 𝜉𝑚)T and 𝜁 = (𝜁1, 𝜁2, ⋅ ⋅ ⋅ , 𝜁𝑢)T are resulting vectors consisting of slack
variables, which correspond respectively to the training set ℒ and 𝒰 , and 𝛾 and 𝜆 are positive
real regularized parameters as in the LS-SVR case.

The Lagrangian for the problem (5)-(7) is

𝐿(w, 𝑏, 𝜉, 𝜁, 𝛼, 𝛽) = 𝐽(w, 𝜉, 𝜁)−
𝑚∑
𝑖=1

𝛼𝑖{wT𝜑(x𝑖)+𝑏+𝜉𝑖−𝑦𝑖}−
𝑢∑

𝑖=1

𝛽𝑖{wT𝜑(x𝑚+𝑖)+𝑏+𝜁𝑖−𝑦𝑖} (8)

where 𝛼𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) and 𝛽𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑢) values are the Lagrange multipliers. Let 𝛼 =
(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑚)

T and 𝛽 = (𝛽1, 𝛽2, ⋅ ⋅ ⋅ , 𝛽𝑢)
T. The KKT conditions for optimality yield⎧⎨⎩

∂𝐿

∂w
= 0 ⇒ w =

∑𝑚
𝑖=1 𝛼𝑖𝜑(x𝑖) +

∑𝑢
𝑖=1 𝛽𝑖𝜑(x𝑚+𝑖)

∂𝐿

∂𝑏
= 0 ⇒ ∑𝑚

𝑖=1 𝛼𝑖 +
∑𝑢

𝑖=1 𝛽𝑖 = 0

∂𝐿

∂𝜉𝑖
= 0 ⇒ 𝛼𝑖 = 𝛾𝜉𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚

∂𝐿

∂𝜁𝑖
= 0 ⇒ 𝛽𝑖 = 𝜆𝜁𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑢

∂𝐿

∂𝛼𝑖

= 0 ⇒ wT𝜑(x𝑖) + 𝑏+ 𝜉𝑖 − 𝑦𝑖 = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚
∂𝐿

∂𝛽𝑖

= 0 ⇒ wT𝜑(x𝑚+𝑖) + 𝑏+ 𝜁𝑖 − 𝑦𝑖 = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑢

(9)
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Similar to the LS-SVR, eliminating w, 𝜉 and 𝜁, one can obtain the following linear system (dual
problem): ⎡⎢⎢⎣

0 eT𝑚 eT𝑢

e𝑚 K1,1 + 𝛾−1I𝑚 K1,2

e𝑢 K2,1 K2,2 + 𝜆−1I𝑢

⎤⎥⎥⎦
⎡⎢⎢⎣

𝑏

𝛼

𝛽

⎤⎥⎥⎦
⎡⎢⎢⎣

0

y

ŷ

⎤⎥⎥⎦ (10)

where e𝑚 and e𝑢 are all-one column vectors with 𝑚 and 𝑢 elements, respectively, and I𝑚 and
I𝑢 are 𝑚- and 𝑢-order identity matrix, respectively. Let Z1 = (𝜑(x1), 𝜑(x2), ⋅ ⋅ ⋅ , 𝜑(x𝑚)), Z2 =
(𝜑(x𝑚+1), 𝜑(x𝑚+2), ⋅ ⋅ ⋅ , 𝜑(x𝑚+𝑢)). Then, K1,1 = ZT

1Z1, K1,2 = KT
2,1 = ZT

1Z2, K2,2 = ZT
2Z2.

Let the solution of linear system (10) be 𝛼∗ = (𝛼∗
1, 𝛼

∗
2, ⋅ ⋅ ⋅ , 𝛼∗

𝑚)
T, 𝛽∗ = (𝛽∗

1 , 𝛽
∗
2 , ⋅ ⋅ ⋅ , 𝛽∗

𝑢)
T and

𝑏∗. Then the corresponding decision function is

𝑓(x) = w∗T𝜑(x) + 𝑏∗ =
𝑚∑
𝑖=1

𝛼∗
𝑖𝐾(x𝑖,x) +

𝑢∑
𝑖=1

𝛽∗
𝑖 𝐾(x𝑚+𝑖,x) + 𝑏∗. (11)

3.2 To Estimate the Labels of Each Example in the Training Set 𝒰
As mentioned in subsection 3.1, the label of each example in the training set 𝒰 is needed in
order to solve the linear system (10). Whether semi-supervised classification or regression,
it is necessary to estimate the resulting labels in the set 𝒰 in some way [3]-[9]. This pa-
per utilizes the neighborhood concept in the feature space ℋ. Specifically, for ∀x ∈ 𝒰 , let
𝒩𝑘(x) = {𝜑(x𝑖1), 𝜑(x𝑖2), ⋅ ⋅ ⋅ , 𝜑(x𝑖𝑘)∣x𝑖𝑡 ∈ ℒ(𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑘)} be the set consisting of 𝑘 nearest
neighborhoods in the feature space ℋ. One can readily estimate the label of x as the weighted

average of the neighborhood labels in 𝒩𝑘(x), i.e. 𝑦 =
(
∑𝑘

𝑡=1 𝑑
−1
𝑡 𝑦𝑖𝑡 )∑

𝑡 𝑑
−1
𝑡

, where 𝑑𝑡 is the distance be-

tween 𝜑(x) and 𝜑(x𝑖𝑡) in the feature space ℋ. In fact, the distance 𝑑𝑡 can be calculated in the
input space by the kernel trick [15] as follows

∥𝜑(x)− 𝜑(x𝑖𝑡)∥ =
√
(𝜑(x)− 𝜑(x𝑖𝑡))

T(𝜑(x)− 𝜑(x𝑖𝑡))

=
√
𝐾(x,x)− 2𝐾(x𝑖𝑡 ,x) +𝐾(x𝑖𝑡 ,x𝑖𝑡).

(12)

4 Experimental Data

Corn data set (http://www.eigenvector.com/data/Corn/index.html) consists of 80 examples of
corn measured on 3 different near-infra-red spectrometers, m5, mp5 and mp6. In this study,
spectra from instrument m5 are used, where the wavelength range is 1100-2498nm at 2nm in-
tervals. The moisture, oil, protein and starch values represent four output/dependent variables.
As the first principal component describes 99% of the overall variance, this indicates high multi-
collinearity among the input/independent variables. Similar to [16], instead of modeling the real
response we generated four different outputs as follows

𝑦1 = exp(xTx/2𝑐) (13)

𝑦2 = exp(xTA−1x/2𝑐1) (14)

𝑦3 = (xTx/𝑐)3 exp(xTx/2𝑐) (15)
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𝑦4 = 0.3𝑦1 + 0.25𝑦2 − 0.7𝑦3 (16)

where A is a symmetric matrix with off-diagonal elements set to 0.8 and diagonal elements set
to 1.0, and 𝑐 and 𝑐1 are averages of {xT

𝑖 x𝑖}80𝑖=1 and {xT
𝑖 A

−1x𝑖}80𝑖=1.

The first 20 examples are used to create a training data set ℒ, the last 20 examples are utilized
to create a testing data set, and the remaining examples form a training data set 𝒰 . In order to
make the synthetic outputs (13)-(16) more realistic, Gaussian white noise with different levels is
added, where noise level, denoted as 𝑛/𝑠, corresponds to ratios of the standard deviation of the
noise and the clean output variables. In this study, we set 𝑛/𝑠 ∈ {15%, 30%, 60%, 90%}. For each
noise level, 25 different training sets are generated.

5 Experiments and Discussions

In order to assess prediction performance, average relative error (𝛿) and correlation coefficient
(𝑅) indices are used, which are formally defined as follows.

𝛿 =
1

𝑛

𝑛∑
𝑖=1

∣𝑦𝑖 − 𝑦𝑖∣
𝑦𝑖

(17)

𝑅 =

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)(𝑦𝑖 − ¯̂𝑦)√∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
∑𝑛

𝑖=1(𝑦𝑖 − ¯̂𝑦)2
(18)

where 𝑦𝑖 and 𝑦𝑖 are actual and predicted outputs, respectively, and 𝑦 and ¯̂𝑦 are average of actual
and predicted outputs, respectively.

Here, the radial basis function (RBF) kernel function is adopted: 𝐾(x, z) = exp(−𝑝∥x −
z∥2), 𝑝 > 0. The reasons are four-fold: (a) the linear kernel function is a special case of RBF
[17]; (b) The Sigmoid kernel function is not positive definite, and for certain parameters, the
Sigmoid kernel function behaves like RBF [18]; (c) Relatively, there are more parameters in
the polynomial kernel function so that it is more difficult for model selection. In addition, the
polynomial kernel function has also numerical difficulties, such as overflow or underflow; (d) The
RBF kernel possesses good smoothness properties, which are usually preferred in the case one
does not have a priori knowledge about the problem [19, 20].

5.1 Parameters Optimization

As is well-known, the values of parameters (𝛾, 𝜆, 𝑝, 𝑘) may influence largely the performance of
LS-SVR and S2LS-SVR. In order to identify proper parameters, the grid search [21, 22] is used
in the case of LS-SVR. Let 𝛾 ∈ {2−5, 2−3, ⋅ ⋅ ⋅ , 215} and 𝑝 ∈ {2−15, 2−13, ⋅ ⋅ ⋅ , 23}. For all possible
combinations (𝛾, 𝑝), the average relative error 𝛿 is calculated using leave-one-out (LOO) procedure.
Thus, an optimal pair 𝛾∗, 𝑝∗ can be determined. In the case of S2LS-SVR, the two-hierarchical
grid search is utilized. Specifically, in the first level, an optimal pair (𝛾∗, 𝑝∗) is selected on the
training set ℒ with LS-SVR. These parameters are then fixed at these values. In the second level,
let 𝜆 ∈ {2−5, 2−3, ⋅ ⋅ ⋅ , 215}, 𝑘 ∈ {1, 2, ⋅ ⋅ ⋅ , 5}. The remaining parameters (𝜆, 𝑘) are determined
using a grid search and LOO procedure while introducing the training set 𝒰 . The criterion to
measure prediction performance is still the average relative error 𝛿 on the training set ℒ. In this
level, an optimal pair (𝜆∗ and 𝑘∗) is determined.
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5.2 Performance Comparison

With the optimal parameters 𝛾∗, 𝜆∗, 𝑝∗ and 𝑘∗ obtained in subsection 5.1, two regression models
are built with LS-SVR and S2LS-SVR, respectively. Then they are applied to predict the resulting
outputs on the testing set, and the corresponding assessment indices are calculated and reported
in Table 1. It is worth mentioning that the values in Table 1 correspond to average of 25 different
simulations. The correlation coefficients for kernel PLS (Partial Least-Squares) regression are
taken directly from [16], but average relative errors are not provided. Furthermore, kernel PLS
regression model is built on the first 60 examples in corn data set.

Table 1: Comparisons of the predicted results with kernel PLS, LS-SVR and S2LS-SVR

𝑛/𝑠
𝑦1 𝑦2 𝑦3 𝑦4

𝛿 𝑅 𝛿 𝑅 𝛿 𝑅 𝛿 𝑅

LS-SVR

15% 0.0165 0.9818 0.0231 0.9708 2.6555 0.9429 1.1252 0.9098

30% 0.0150 0.9864 0.0216 0.9842 2.5643 0.9381 1.0542 0.9345

60% 0.0168 0.9003 2.6872 0.9306 2.6872 0.9306 1.1133 0.8802

90% 0.0171 0.7609 2.5982 0.6784 2.5982 0.6784 1.0959 0.6762

Kernel PLS

15% – 0.99 – 0.99 – 0.98 – 0.98

30% – 0.97 – 0.97 – 0.94 – 0.95

60% – 0.89 – 0.89 – 0.88 – 0.88

90% – 0.85 – 0.77 – 0.85 – 0.85

S2LS-SVR

15% 0.0026 0.9946 0.0059 0.9922 1.1101 0.9627 0.5015 0.9618

30% 0.0050 0.9943 0.0079 0.9918 1.4070 0.9581 0.5618 0.9581

60% 0.0082 0.9941 0.0114 0.9916 1.6750 0.9599 0.6471 0.9581

90% 0.0108 0.9941 0.0142 0.9897 1.9021 0.9615 0.7614 0.8814

From Table 1, it is not difficult to see that our S2LS-SVR outperforms obviously kernel PLS
regression and LS-SVR, and kernel PLS regression outperforms LS-SVR. In our opinion, there
are two main reasons: (a) The S2LS-SVR considers the training set 𝒰 as well as the training set
ℒ when constructing the model. This indicates that the training set 𝒰 can boost the predictive
performance of the LS-SVR. Though the training set 𝒰 is available in advance, the kernel PLS
regression and LS-SVR cannot exploit the underlying knowledge in the set 𝒰 , since the resulting
labels are unknown. (b) The kernel PLS regression comes next to S2LS-SVR in performance. The
main reason is that it considers first 60 examples in corn data set. Another way to say this is
that the actual labels for training set 𝒰 are also considered when constructing the corresponding
models. In theory, the model that is built on the basis of the information is upper limit of the
counterpart semi-supervised model [3].

Additionally, the performance of kernel PLS regression and LS-SVR gradually decreases as
white noise level (𝑛/𝑠) increases. In particular, the change in the predicted performance for LS-
SVR is more obvious. We think that reasons are two-fold: (a) Since the labels for training set 𝒰
are estimated from neighbors’ labels in training set ℒ, so that estimated labels may be closer to
real ones than those contaminated by white noise. Thus, the influence that white noise on the
model performance may be offset largely. (b) The kernel PLS regression represents input and
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output matrix with principal components in feature space ℋ, so that the information underlying
in input and output matrix can be made use of. Furthermore, principal components themselves
can greatly reduce the effect of noise.

6 Conclusions

Motivated by semi-supervised ridge regression model, this paper proposes a novel semi-supervised
method for regression problem, S2LS-SVR, on the basis of the LS-SVR. Firstly, the labels of the
un-annotated examples are estimated according to the nearest neighborhood characteristic in the
feature space. The information is then introduced when constructing the S2LS-SVR model. On
the one hand, one can enrich the training set, and provide more training examples for supervised
learning algorithm. On the other hand, the nearest neighborhood characteristic can reduce the
effect of noise, thus improving the robustness of the model. Finally, experimental results on corn
data set show the S2LS-SVR outperforms the kernel PLS regression and LS-SVM, which verifies
the feasibility and efficiency of the S2LS-SVR method.
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