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Abstract

The Multidimensional Scaling (MDS) has become a standard technique in multivariate data analysis and
is widely used in a variety of disciplines. The objective of MDS is to find a configuration matrix so that
given pairwise dissimilarities can be preserved as faithfully as possible. But since there exist a lot of non-
global minima for (s)stress, many optimization iterative algorithms are liable to converge to local minima.
Thus, the choice of a good initial configuration is crucial. Through closer examination on currently used
initial configurations, we find that all these configurations require extensive preprocessing and usually are
computationally expensive, thus not appropriate for large scale applications. To overcome this problem,
we conjecture that several approximating scalable solutions for classical MDS can be used to initialize
the configuration for metric MDS at lower complexity, but should have comparative performance with
classical MDS. Finally, extensive simulation experimental results verify our assumptions.

Keywords: Multidimensional Scaling (MDS); Classical MDS; (s)stress; FastMap Algorithm; Initial
Configuration

1 Introduction

The term Multidimensional Scaling (MDS) [1, 2] refers to a family of techniques that construct
a configuration of points in a target metric space from information about inter-point dissimi-
larities, measured in some other metric space. Originally developed by psychometricians, MDS
has become a standard technique in multivariate data analysis and is widely used in a variety
of disciplines, such as Wireless Sensor Network (WSN) location [3], computational chemistry [4],
Knowledge Organization System (KOS) [5], and author co-citation analysis [6], etc. Depending
on the meaning of the inter-point dissimilarity, MDS techniques can be further divided into t-
wo categories: metric and non-metric. This paper mainly puts focus on metric MDS. For more
elaborate and detailed surveys we refer the readers to [1, 2].
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MDS takes as input an n × n matrix ∆ = [δi,j] containing pairwise dissimilarities between all
n objects. A valid dissimilarity matrix ∆ must satisfy: (i) non-negative, δi,j ≥ 0 for ∀(i, j) ∈
Nn × Nn, where Nn = {1, 2, . . . , n}; (ii) self-similarity, δi,i = 0 for ∀i ∈ Nn and (iii) symmetry,
δi,j = δj,i for ∀(i, j) ∈ Nn × Nn. A dissimilarity matrix ∆ is metric if (i)-(iii) hold and ∆ obeys
the triangle inequality: δi,j ≤ δi,k + δk,j for ∀(i, j, k) ∈ Nn×Nn×Nn. It is worth mentioning that
not all metric dissimilarity matrices ∆ are necessarily Euclidean. By the Euclidean matrix, we
means that one can utilize ∆ to embed the n objects in a Euclidean space in some way such that
the Euclidean distance matrix between all n points is equal to ∆ exactly. Gower and Legendre
[7, 8] gave a nice example to illustrate this point.

The objective of MDS is to find corresponding configuration xi ∈ Rp for each object i ∈ Nn so
that given pairwise dissimilarities can be preserved as faithfully as possible. That is to say, to find
a n× p configuration matrix X = [x1,x2, . . . ,xn]

T so that the distance matrix D(X) = [di,j(X)]
(D = [di,j] for short) approximates the dissimilarity matrix ∆ as possible as one can. Two
commonly used criteria for measuring the discrepancy between D and ∆ are the raw stress and
sstress functions, given by

ρr(X,∆,W) =
∑
i<j

wi,j[(di,j(X))r − δri,j]
2 ≡

∑
i<j

wi,j[d
r
i,j − δri,j]

2 (1)

Here, the nonnegative weights matrix W = [wi,j] can be used to give more importance to some
dissimilarities, or to accommodate missing entities or to exclude some entities from the stress
(ρ1(·, ·, ·)) or sstress (ρ2(·, ·, ·)) calculation by setting the appropriate wi,j = 0. In MDS literature,
the sstress function is slight less popular than the stress function, which is the criterion that we
consider in this paper.

Since the stress are non-linear non-convex functions w.r.t. X, minima of ρ1(·, ·, ·) are usually
calculated by some iterative algorithm. A survey of related algorithms for minimizing ρ1(·, ·, ·)
was made by [9, 10]. Many empirical and theoretical evidences (such as [11, 12], just to name a
few) indicate that there exist a lot of non-global minima for (1) and many optimization algorithms
are liable to converge to local minima. To improve the chance that the algorithm will converge
to a global minimum, using a good initial configuration is therefore important. A popular choice
of initial configuration is the configuration obtained by classical MDS [13]. Malone et al. [14]
exploited results from the theory of distance matrices to derive two alternatives, which guaranteed
to be at least as good as the classical MDS.

However, all these methods require extensive preprocessing and usually are computationally
expensive, thus not appropriate for large scale applications. Since 1995, several approximating
scalable solutions for classical MDS have been proposed, such as FastMap [15], Landmark MDS
[16, 17], MetricMap [18] and so on. FastMap determines one coordinate at a time, and is exactly
an iterated form of Landmark MDS in the simplest case of 2 landmarks [16]. MetricMap attempts
to do the entire projection at once. Furthermore, Platt [19] showed that all three algorithms are
based on the Nyström approximation of the eigenvectors and eigenvalues of a matrix.

We conjecture that any of the solutions obtained by these three algorithms can be used to
initialize the configuration for metric MDS at lower complexity, but should have comparative
performance with classical MDS in terms of average distance error (see Section 4). To validate
this assumption, FastMap is adopted as an illustrative example. But the discussions here should
be equally applicable for MetricMap and Landmark MDS. The organization of the rest of this
paper is as follows. The classical MDS and FastMap algorithm are briefly described in Section 2
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& 3, respectively. In Section 4 extensive simulation experimental evaluations are conducted and
discussed, and Section 5 concludes this paper.

2 Classical MDS

The procedure for classical MDS is summarized in the following steps.

1. Convert the input dissimilarity matrix ∆ into a matrix of dot products, or a Gram matrix
B. This is done by multiplying the matrix of squared dissimilarity ∆2 on both sides with a
double centering matrix H, which in fact subtracts out the row and column average of each
entry and adds back the overall matrix average. Formally,

B = −1

2
H∆2H (2)

where H = I − ( 1
n
)eeT is the mean-centering matrix, I is the identity matrix and e is an

all-one column vector.

2. Since B is symmetric, it can be eigendecomposed into B = VΛVT, where Λ is a diag-
onal matrix containing the eigenvalues and V = (v1,v2, . . . ,vn) whose columns are the
corresponding eigenvectors.

3. Let the matrix of the first p eigenvalues greater than zero be Λ+ and V+ the first p columns

of V. Then, the configuration of classical MDS is given by X = V+Λ
1
2
+.

It is easy to see that the Step 2 is the bottleneck of classical MDS. A complete eigendecompo-
sition of B using QR decomposition takes O(n3) time, resulting in an O(n3) time complexity for
classical MDS. However, a nice property of classical MDS is that the dimensions are nested. This
means that, for example, the first k− 1 dimensions of a k-dimensional classical MDS solution are
the same as the k − 1 dimensions of a (k − 1)-dimensional classical MDS solution.

Additionally, due to the preprocessing procedure in Step 1, classical MDS is not equivalent to
nonlinear least-squares parameter fitting using the original measurements. In fact, classical MDS
can be defined by the following optimization problem, which is implicit in Torgerson’s [13] and
Gower’s [20] pioneering studies of metric MDS:

min
X∈Rn×p

L(X) = ∥ −1

2
H[D2(X)−∆2]H ∥2

= ∥ XXT +
1

2
H∆2H ∥2

= ∥ XXT −B ∥2 (3)

Here, L(X) is sometime called strain. Gower [20] proved that choosing the solution of classical
MDS solves (3).
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3 FastMap Algorithm

The FastMap algorithm, which was proposed by Falutsos and Lin [15], is considered as a distance
mapping algorithm or dimension reduction method. The procedure for FastMap algorithm is
summarized in the following steps.

1. Initialization: Let D←∆, k ← 1.

2. Choose two pivot objects (Oa and Ob) to form the project line in the next step. The
two pivot objects should be selected such that the distance (da,b) between Oa and Ob is
maximized. In order to keep the time complexity of the FastMap algorithm linear, Falusos
and Lin [15] proposed a linear heuristic algorithm. The middle two steps in the heuristic
algorithm can be repeated a constant number of times, denoted by r. In our experiments,
we let r = 5.

Oi

Oa Ob
E

da,i db,i

da,b

[xi]k

Fig. 1: Illustration of the cosine law – projection on the line Oa – Ob

3. Project all other objects, Oi for ∀i ∈ Nn − {a, b}, on the project line Oa – Ob to find the
k-th coordinate [xi]k by utilizing the cosine law. Fig. 1 illustrates the projection of Oi onto
the line Oa – Ob. The k-th coordinate [xi]k can be obtained by using Pythagorean Theorem
for the rectangles △OiEOa and △OiEOb and is given formally by

[xi]k =
d2a,i + d2a,b − d2b,i

2da,b
, for ∀i ∈ Nn (4)

4. Update the distance matrix D. To make this easier to follow, consider an imaginary hyper-
plane H perpendicular to the line Oa – Ob, and then project all the objects onto H. For any
two distinct objects Oi and Oj, let the resulting projections on H be O′

i and O′
j, respectively.

Then it can be shown that the distance between O′
i and O′

j on H is given by [15]:

d′2i,j = d2i,j − ([xi]k − [xj]k)
2, for∀(i, j) ∈ Nn × Nn (5)

And let D← D′ = [d′i,j].

5. Let k ← k + 1, and then repeat Step 2-4 until k = p.

The main advantage of the FastMap algorithm is its low computational complexity. Specifically,
the time complexity is O(p × n). However, the FastMap algorithm is sensitive to outliers and
coordinate alignment [21, 22].
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4 Experiments and Discussions

To verify our assumption in Section 1 and illustrate the noise-sensitivity of metric MDS with dif-
ferent initial configurations, n ∈ {500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000} points
are randomly independently generated from the uniform distribution within a square of side 1
(unit distance) and center at (0.5, 0.5) subjected to varying degree of noise. To add noise to the
data, the Euclidean distance matrix was multiplied entry-wise by independent random variables
distributed as exp(N(0, σ)) and symmetrized. The noise levels ν% referred to in the Fig. 2 & 3
are defined by ν = 100× (exp(σ)−1). In this study, we set ν ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, where
ν = 0 corresponds to no noise level. This modified distance matrix is then passed to metric MDS.

The quality of the algorithms is measured in two ways: CPU time, and how much average
distance error ε is introduced by the embedding:

ε =
1

n

√√√√ n∑
i=1

p∑
i=1

([xi]k − [x̂i]k)2 (6)

where xi is the true (unembedded) coordinate and x̂i is the estimated one for each object i ∈ Nn.
For each noise level, the experiments are repeated 5 times. And the values in Fig. 2 & 3 correspond
to average of 5 different simulations. For nonnegative weights matrix W = [wi,j], we set each
wi,j = 1. We have implemented all related algorithms in MATLAB R2006a on an IBM 3850
M2. The corresponding toolbox can be available from the authors upon request for academic use.
Since an MDS solution is unique down to a rigid-body transformation, with a possible reflection,
the procrustes procedure [1] is utilized when necessary.

From Fig. 2, it is not difficult to see that the FastMap algorithm has comparative performance
with classical MDS in terms of average distance error (ε). Moreover, the performance of both
FastMap algorithm and classical MDS gradually decreases as the noise level (ν%) increases, which
indicates that both of them are sensitive to noise. However, in terms of CPU time, the performance
of two algorithms has a big gap from Fig. 3. When the number of considered objects, n, is small,
such as n = 500, 1000, 1500, classical MDS has a certain advantage over FastMap algorithm. But
when n ≥ 2000, FastMap algorithm outperforms obviously classical MDS. This indicates that
FastMap algorithm has better scalability than classical MDS, thus appropriate for large scale
embedding applications. All these verify our assumptions in Section 1.

5 Conclusions

The Multidimensional Scaling (MDS) has become a standard technique in multivariate data
analysis and is widely used in a variety of disciplines. The objective of MDS is to find a con-
figuration matrix so that given pairwise dissimilarities can be preserved as faithfully as possible.
The raw (s)stress functions are commonly used criteria for measuring the discrepancy. However,
the (s)stress are non-linear non-convex functions w.r.t. the configuration matrix, so minima of
(s)stress are usually calculated by some iterative algorithms. But since there exist a lot of non-
global minima for (s)stress, many optimization algorithms are liable to converge to local minima.
Therefore, the choice of an initial configuration from which to begin searching for an optimal
configuration is crucial.
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Many approaches for good initial configurations are proposed, such as classical MDS, two ones
raised by Malone et al. [14] and so on. On closer examination, we find that all these methods
require extensive preprocessing and usually are computationally expensive, thus not appropriate
for large scale applications. To overcome this problem, we conjecture that several approximating
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scalable solutions for classical MDS, such as FastMap [15], Landmark MDS [16, 17], MetricMap
[18], etc., can be used to initialize the configuration for metric MDS at lower complexity, but
should have comparative performance with classical MDS in terms of average distance error.
Finally, extensive simulation experimental results verify our assumptions.
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